Skip to main content

Quantitative Studies of Neuronal Chemotaxis in 3D

  • Protocol
  • First Online:
Chemotaxis

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 571))

Summary

During development a variety of cell types are guided by molecular concentration gradients to form tissues and organ systems. In the nervous system, the migration and neuronal pathfinding that occurs during development is organized and driven by “guidance cues.” Some of these cues are substrate bound or nondiffusible, while many are diffusible and form gradients within the developing embryo to guide neurons and neurites to their appropriate destination. There have been many approaches used to discover and characterize the multitude of guidance cues, their cognate receptors, and how these cues and receptors are regulated to achieve the highly detailed connections found in the nervous system.

Here we present a method for creating precisely controlled gradients of molecular factors within a three-dimensional culture environment. The method is based on a non contact mediated delivery of biomolecules to the surface of a collagen gel. The factors are printed in a pattern on the top of a gel containing the tissue or cell type of interest embedded in the gel. The formation of the gradient is dependent upon the diffusion of the printed molecule in the gel. The concentration of the factor within the gel becomes independent of depth rapidly, and the gradient becomes smooth on a similar time scale. The gradients formed can remain relatively stable for a day or more. Moreover, the steepness and molar concentration of tropic or trophic factors within the gradient can be controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dickson, B. J. (2002) Molecular mechanisms of axon guidance. Science 298, 1959–1964.

    Article  PubMed  CAS  Google Scholar 

  2. Guan, K. L., and Rao, Y. (2003) Signalling mechanisms mediating neuronal responses to guidance cues. Nat. Rev. Neurosci. 4, 941–956.

    Article  PubMed  CAS  Google Scholar 

  3. Plachez, C., and Richards, L. J. (2005) Mechanisms of axon guidance in the developing nervous system. Curr. Top. Dev. Biol. 69, 267–346.

    Article  PubMed  CAS  Google Scholar 

  4. Mortimer, D., Fothergill, T., Pujic, Z., Richards, L. J., and Goodhill, G. J. (2008) Growth cone chemotaxis. Trends Neurosci. 31, 90–98.

    Article  PubMed  CAS  Google Scholar 

  5. Lumsden, A. G., and Davies, A. M. (1983) Earliest sensory nerve fibres are guided to peripheral targets by attractants other than nerve growth factor. Nature 306, 786–788.

    Article  PubMed  CAS  Google Scholar 

  6. Lohof, A. M., Quillan, M., Dan, Y., and Poo, M. M. (1992) Asymmetric modulation of cytosolic cAMP activity induces growth cone turning. J. Neurosci. 12, 1253–1261.

    PubMed  CAS  Google Scholar 

  7. Goodhill, G. J. (1997) Diffusion in axon guidance. Eur. J. Neurosci. 9, 1414–1421.

    Article  PubMed  CAS  Google Scholar 

  8. Pujic, Z., Giacomantonio, C. E., Unni, D., Rosoff, W. J., and Goodhill, G. J. (2008) Analysis of the growth cone turning assay for studying axon guidance. J. Neurosci. Methods 170, 220–228.

    Article  PubMed  Google Scholar 

  9. Knapp, D. M., Helou, E. F., and Tranquillo, R. T. (1999) A fibrin or collagen gel assay for tissue cell chemotaxis: assessment of fibroblast chemotaxis to GRGDSP. Exp. Cell Res. 247, 543–553.

    Article  PubMed  CAS  Google Scholar 

  10. Letourneau, P. C. (1978) Chemotactic response of nerve fiber elongation to nerve growth factor. Dev. Biol. 66, 183–196.

    Article  PubMed  CAS  Google Scholar 

  11. Moghe, P. V., Nelson, R. D., and Tranquillo, R. T. (1995) Cytokine-stimulated chemotaxis of human neutrophils in a 3-D conjoined fibrin gel assay. J. Immunol. Methods 180, 193–211.

    Article  PubMed  CAS  Google Scholar 

  12. Cao, X., and Shoichet, M. S. (2001) Defining the concentration gradient of nerve growth factor for guided neurite outgrowth. Neuroscience 103, 831–840.

    Article  PubMed  CAS  Google Scholar 

  13. Fisher, P. R., Merkl, R., and Gerisch, G. (1989) Quantitative analysis of cell motility and chemotaxis in Dictyostelium discoideum by using an image processing system and a novel chemotaxis chamber providing stationary chemical gradients. J. Cell Biol. 108, 973–984.

    Article  PubMed  CAS  Google Scholar 

  14. Haddox, J. L., Pfister, R. R., and Sommers, C. I. (1991) A visual assay for quantitating neutrophil chemotaxis in a collagen gel matrix. A novel chemotactic chamber. J. Immunol. Methods 141, 41–52.

    Article  PubMed  CAS  Google Scholar 

  15. Nelson, R. D., Quie, P. G., and Simmons, R. L. (1975) Chemotaxis under agarose: a new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leukocytes and monocytes. J. Immunol. 115, 1650–1656.

    PubMed  CAS  Google Scholar 

  16. Kapur, T. A., and Shoichet, M. S. (2003) Chemically-bound nerve growth factor for neural tissue engineering applications. J. Biomater. Sci. Polym. Ed. 14, 383–394.

    Article  PubMed  CAS  Google Scholar 

  17. Rosoff, W. J., Urbach, J. S., Esrick, M. A., McAllister, R. G., Richards, L. J., and Goodhill, G. J. (2004) A new chemotaxis assay shows the extreme sensitivity of axons to molecular gradients. Nat. Neurosci. 7, 678–682.

    Article  PubMed  CAS  Google Scholar 

  18. Rosoff, W. J., McAllister, R., Esrick, M. A., Goodhill, G. J., and Urbach, J. S. (2005) Generating controlled molecular gradients in 3D gels. Biotechnol. Bioeng. 91, 754–759.

    Article  PubMed  CAS  Google Scholar 

  19. Mortimer, D., Feldner, J., Vaughan, T., Vetter, I., Pujic, Z., Rosoff, W. J., Burrage, K., Dayan, P., Richards, L. J., and Goodhill, G. J. (2009) A Bayesian model predicts the response of axons to molecular gradients. Proc. Natl. Acad. Sci. USA 106, 10296–10301.

    Google Scholar 

Download references

Acknowledgments

Linda Richards provided invaluable advice throughout this project. We thank Gesim for images of the microdispenser and Nanoplotter. The work was supported by the National Institutes of Health, the National Science Foundation, and the Whitaker Foundation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press

About this protocol

Cite this protocol

Rosoff, W.J., McAllister, R.G., Goodhill, G.J., Urbach, J.S. (2009). Quantitative Studies of Neuronal Chemotaxis in 3D. In: Jin, T., Hereld, D. (eds) Chemotaxis. Methods in Molecular Biology™, vol 571. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-198-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-198-1_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-197-4

  • Online ISBN: 978-1-60761-198-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics