Skip to main content

Multilocus Sequence Typing

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 551))

Abstract

Multilocus sequence typing (MLST) was first proposed in 1998 as a typing approach that enables the unambiguous characterization of bacterial isolates in a standardized, reproducible, and portable manner using the human pathogen Neisseria meningitidis as the exemplar organism. Since then, the approach has been applied to a large and growing number of organisms by public health laboratories and research institutions. MLST data, shared by investigators over the world via the Internet, have been successfully exploited in applications ranging from molecular epidemiological investigations to population biology and evolutionary analyses. This chapter describes the practical steps in the development and application of an MLST scheme and some of the common tools and techniques used to obtain the maximum benefit from the data. Considerations pertinent to the implementation of high-capacity MLST projects (i.e., those involving thousands of isolates) are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Maiden, M. C. J., Bygraves, J. A., Feil, E., Morelli, G., Russell, J. E., Urwin, R., (1998). Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl. Acad. Sci. U S A 95, 3140–3145.

    Article  PubMed  CAS  Google Scholar 

  2. Maiden, M. C. (2006). Multilocus sequence typing of bacteria. Annu. Rev. Microbiol. 60, 561–588.

    Article  PubMed  CAS  Google Scholar 

  3. Urwin, R., and Maiden, M. C. (2003). Multi-locus sequence typing: a tool for global epidemiology. Trends Microbiol. 11, 479–487.

    Article  PubMed  CAS  Google Scholar 

  4. Selander, R. K., Caugant, D. A., Ochman, H., Musser, J. M., Gilmour, M. N., and Whittam, T. S. (1986). Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl. Environ. Microbiol. 51, 837–884.

    Google Scholar 

  5. Maynard Smith, J., Smith, N. H., O’Rourke, M., and Spratt, B. G. (1993). How clonal are bacteria?. Proc. Natl. Acad. Sci. U S A 90, 4384–4388.

    Article  Google Scholar 

  6. Maynard Smith, J., Dowson, C. G., and Spratt, B. G. (1991). Localized sex in bacteria. Nature 349, 29–31.

    Article  Google Scholar 

  7. Maynard Smith, J., Feil, E. J., and Smith, N. H. (2000). Population structure and evolutionary dynamics of pathogenic bacteria. BioEssay 22, 1115–1122.

    Article  Google Scholar 

  8. Maiden, M. C. J. (2000). High-throughput sequencing in the population analysis of bacterial pathogens. Int. J. Med. Microbiol 290, 183–190.

    Article  PubMed  CAS  Google Scholar 

  9. Jolley, K. A., Chan, M. S., and Maiden, M. C. (2004). mlstdbNet—distributed multi-locus sequence typing (MLST) databases. BMC Bioinformatics 5, 86.

    Article  PubMed  Google Scholar 

  10. Chan, M. S., Maiden, M. C., and Spratt, B. G. (2001). Database-driven multi locus sequence typing (MLST) of bacterial pathogens. Bioinformatics. 17, 1077–1083.

    Article  PubMed  CAS  Google Scholar 

  11. Caugant, D. A., Frøholm, L. O., Bovre, K., Holten, E., Frasch, C. E., Mocca, L. F., (1986). Intercontinental spread of a genetically distinctive complex of clones of Neisseria meningitidis causing epidemic disease. Proc. Natl. Acad. Sci U S A 83, 4927–4931.

    Article  PubMed  CAS  Google Scholar 

  12. Olyhoek, T., Crowe, B. A., and Achtman, M. (1987). Clonal population structure of Neisseria meningitidis serogroup A isolated from epidemics and pandemics between 1915 and 1983. Rev. Infect. Dis. 9, 665–682.

    Article  PubMed  CAS  Google Scholar 

  13. Zhang, Q. Y., Jones, D. M., Saez Nieto, J. A., Perez Trallero, E., and Spratt, B. G. (1990). Genetic diversity of penicillin-binding protein 2 genes of penicillin-resistant strains of Neisseria meningitidis revealed by fingerprinting of amplified DNA. Antimicrob. Agents Chemother. 34, 1523–1528.

    Article  PubMed  CAS  Google Scholar 

  14. Feavers, I. M., Heath, A. B., Bygraves, J. A., and Maiden, M. C. (1992). Role of horizontal genetic exchange in the antigenic variation of the class 1 outer membrane protein of Neisseria meningitidis. Mol. Microbiol. 6, 489–495.

    Article  PubMed  CAS  Google Scholar 

  15. Maniatis, T., Fritsch, E. F., and Sambrook, J. (1982). Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  16. Staden, R. (1996). The Staden sequence analysis package. Mol. Biotechnol. 5, 233–241.

    Article  PubMed  CAS  Google Scholar 

  17. Womble, D. D. (2000). GCG: The Wisconsin package of sequence analysis programs. Methods Mol. Biol. 132, 3–22.

    PubMed  CAS  Google Scholar 

  18. Jolley, K. A., Feil, E. J., Chan, M. S., and Maiden, M. C. (2001). Sequence type analysis and recombinational tests (START). Bioinformatics. 17, 1230–1231.

    Article  PubMed  CAS  Google Scholar 

  19. Field, D., Tiwari, B., and Snape, J. (2005). Bioinformatics and data management support for environmental genomics. PLoS Biol. 3, e297.

    Article  PubMed  Google Scholar 

  20. Gupta, S., and Maiden, M. C. J. (2001). Exploring the evolution of diversity in pathogen populations. Trends Microbiol. 9, 181–192.

    Article  PubMed  CAS  Google Scholar 

  21. Holmes, E. C., Urwin, R., and Maiden, M. C. J. (1999). The influence of recombination on the population structure and evolution of the human pathogen Neisseria meningitidis. Mol. Biol. Evol. 16, 741–749.

    Article  PubMed  CAS  Google Scholar 

  22. Dykhuizen, D. E., Polin, D. S., Dunn, J. J., Wilske, B., Preac Mursic, V., Dattwyler, R. J., (1993). Borrelia burgdorferi is clonal: implications for taxonomy and vaccine development. Proc. Natl. Acad. Sci U S A 90, 10163–10167.

    Article  PubMed  CAS  Google Scholar 

  23. Feil, E. J., Li, B. C., Aanensen, D. M., Hanage, W. P., and Spratt, B. G. (2004). eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J. Bacteriol. 186, 1518–1530.

    Article  PubMed  CAS  Google Scholar 

  24. Kumar, S., Tamura, K., and Nei, M. (2004). MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform. 5, 150–163.

    Article  PubMed  CAS  Google Scholar 

  25. Huson, D. H. (1998). SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics. 14, 68–73.

    Article  PubMed  CAS  Google Scholar 

  26. Jefferies, J., Clarke, S., Diggle, M., Smith, A., Dowson, C., and Mitchell, T. (2003). Automated pneumococcal MLST using liquid-handling robotics and a capillary DNA sequencer. Mol. Biotechnol. 24, 303–308.

    Article  PubMed  CAS  Google Scholar 

  27. Clarke, S. C. (2002). Nucleotide sequence-based typing of bacteria and the impact of automation. Bioessays 24, 858–862.

    Article  PubMed  CAS  Google Scholar 

  28. Diggle, M. A., and Clarke, S. C. (2002). What a load of old sequence!!!. J. Clin. Microbiol. 40, 2707.

    Article  PubMed  Google Scholar 

  29. Kriz, P., Kalmusova, J., and Felsberg, J. (2002). Multilocus sequence typing of Neisseria meningitidis directly from cerebrospinal fluid. Epidemiol. Infect. 12 8, 157–160.

    Article  PubMed  CAS  Google Scholar 

  30. Diggle, M. A., Bell, C. M., and Clarke, S. C. (2003). Nucleotide sequence-based typing of meningococci directly from clinical samples. J. Med. Microbiol. 52, 505–508.

    Article  PubMed  CAS  Google Scholar 

  31. Bygraves, J. A., Urwin, R., Fox, A. J., Gray, S. J., Russell, J. E., Feavers, I. M., (1999). Population genetic and evolutionary approaches to the analysis of Neisseria meningitidis isolates belonging to the ET-5 complex. J. Bacteriol. 181, 5551–5556.

    PubMed  CAS  Google Scholar 

  32. Feavers, I. M., Gray, S. J., Urwin, R., Russell, J. E., Bygraves, J. A., Kaczmarski, E. B., (1999). Multilocus sequence typing and antigen gene sequencing in the investigation of a meningococcal disease outbreak. J. Clin. Microbiol. 37, 3883–3887.

    PubMed  CAS  Google Scholar 

  33. Brehony, C., Jolley, K. A., and Maiden, M. C. (2007). Multilocus sequence typing for global surveillance of meningococcal disease. FEMS Microbiol. Rev. 31, 15–26.

    Article  PubMed  CAS  Google Scholar 

  34. Zhang, X. B., Shao, Z. J., Yang, E., Xu, L., Xu, X. Y., Li, M. C., (2007). Molecular characterization of serogroup C Neisseria meningitidis isolated in China. J. Med. Microbiol. 56, 1224–1229.

    Article  PubMed  CAS  Google Scholar 

  35. Cartwright, K., Reilly, S., White, D., Stuart, J., Begg, N., and Constantine, C. (1993). Management of early meningococcal disease. Lancet 342, 985–986.

    Article  PubMed  CAS  Google Scholar 

  36. Cartwright, K., Reilly, S., White, D., and Stuart, J. (1992). Early treatment with parenteral penicillin in meningococcal disease. BMJ. 305, 143–147.

    Article  PubMed  CAS  Google Scholar 

  37. Ni, H., Knight, A. I., Cartwright, K., Palmer, W. H., and McFadden, J. (1992). Polymerase chain reaction for diagnosis of meningococcal meningitis. Lancet 340, 1432–1434.

    Article  PubMed  CAS  Google Scholar 

  38. Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Res. 27, 209–220.

    PubMed  CAS  Google Scholar 

  39. Schneider, S., Roessli, D., and Excoffier, L. (2000). Arlequin Version 2.000: A Software for Population Genetic Data Analysis. University of Geneva, Geneva, Switzerland.

    Google Scholar 

  40. Wright, S. (1951). The genetical structure of populations. Ann. Eugen. 15, 323–354.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ibarz Pavón, A., Maiden, M.C. (2009). Multilocus Sequence Typing. In: Caugant, D. (eds) Molecular Epidemiology of Microorganisms. Methods in Molecular Biology™, vol 551. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-999-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-999-4_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-998-7

  • Online ISBN: 978-1-60327-999-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics