Skip to main content

Dynamic Causal Modelling of Brain Responses

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 41))

Summary

This chapter is about modelling-distributed brain responses and, in particular, the functional integration among neuronal systems. Inferences about the functional organisation of the brain rest on models of how measurements of evoked responses are caused. These models can be quite diverse, ranging from conceptual models of functional anatomy to mathematical models of neuronal and haemodynamics. The aim of this chapter is to introduce dynamic causal models. These models can be regarded as generalisations of the simple models employed in conventional analyses of regionally specific brain responses. In what follows, we will start with anatomical models of functional brain architectures, which motivate some of the basic principles of neuroimaging. We then review briefly statistical models (e.g., the general linear model) used for making classical and Bayesian inferences about where neuronal responses are expressed. By incorporating biophysical constraints, these basic models can be finessed and, in a dynamic setting, rendered causal. This allows us to infer how interactions among brain regions are mediated. This chapter focuses on causal models for distributed responses measured with fMRI and electroencephalography. The latter is based on neural-mass models and affords mechanistic inferences about how evoked responses are caused, at the level of neuronal sub-populations and the coupling among them.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Notes

  1. 1.

    For simplicity, here and in Eq. 7, we deal with only one experimental input.

  2. 2.

    Propagation delays on the extrinsic connections have been omitted for clarity here and in Fig. 5.

References

  1. Staum M. Physiognomy and phrenology at the Paris Athénée. J Hist Ideas 1995;6:443–462.

    Article  Google Scholar 

  2. Phillips CG, Zeki S, and Barlow HB. Localisation of function in the cerebral cortex: Past present and future. Brain 1984;107:327–361.

    Article  PubMed  Google Scholar 

  3. Goltz F. In “Transactions of the 7th international medical congress” (W. MacCormac, Ed.), Vol. I, JW Kolkmann: London, 1881:218–228.

    Google Scholar 

  4. Absher JR and Benson DF. Disconnection syndromes: An overview of Geschwind’s contributions. Neurology 1993;43:862–867.

    Article  PubMed  CAS  Google Scholar 

  5. Zeki S. The motion pathways of the visual cortex. In “Vision: Coding and efficiency” (C. Blakemore, Ed.), Cambridge University Press, UK, 1990:321–345.

    Google Scholar 

  6. Friston KJ, Frith CD, Liddle PF, and Frackowiak RSJ. Comparing functional (PET) images: The assessment of significant change. J Cereb Blood Flow Metab 1991;11:690–699.

    Article  PubMed  CAS  Google Scholar 

  7. Berry DA and Hochberg Y. Bayesian perspectives on multiple comparisons. J Statistical Planning and Inference 1999;82:215–227.

    Article  Google Scholar 

  8. Holmes A and Ford I. A Bayesian approach to significance testing for statistic images from PET. In “Quantification of brain function, tracer kinetics and image analysis in brain PET” (K. Uemura, N.A. Lassen, T. Jones, and I. Kanno, Eds.), Excerpta Medica, Int. Cong. Series No. 1993;1030:521–534.

    Google Scholar 

  9. Dempster AP, Laird NM, and Rubin. Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat Soc 1977;Series B 39:1–38.

    Google Scholar 

  10. Friston KJ, Jezzard P, and Turner R. Analysis of functional MRI time series. Human Brain Map 1994;1:153–171.

    Article  Google Scholar 

  11. Boynton GM, Engel SA, Glover GH, and Heeger DJ. Linear systems analysis of functional magnetic resonance imaging in human V1. J Neurosci 1996;16:4207–4221.

    PubMed  CAS  Google Scholar 

  12. Friston KJ, Frith CD, Turner R, and Frackowiak RSJ. Characterising evoked hemodynamics with fMRI. NeuroImage 1995;2:157–165.

    Article  PubMed  CAS  Google Scholar 

  13. Josephs O, Turner R, and Friston KJ. Event-related fMRI Hum. Brain Mapp 1997;5:243–248.

    Article  CAS  Google Scholar 

  14. Lange N and Zeger SL. Non-linear Fourier time series analysis for human brain mapping by functional magnetic resonance imaging (with discussion). J Roy Stat Soc Ser C 1997;46:1–29.

    Article  Google Scholar 

  15. Buxton RB and Frank LR. A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J Cereb Blood Flow Metab 1997;17:64–72.

    Article  PubMed  CAS  Google Scholar 

  16. Mandeville JB, Marota JJ, Ayata C, Zararchuk G, Moskowitz MA, Rosen B, and Weisskoff RM. Evidence of a cerebrovascular postarteriole Windkessel with delayed compliance. J Cereb Blood Flow Metab 1999;19:679–689.

    Article  PubMed  CAS  Google Scholar 

  17. Hoge RD, Atkinson J, Gill B, Crelier GR, Marrett S, and Pike GB. Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. Proc Natl Acad Sci 1999;96:9403–9408.

    Article  PubMed  CAS  Google Scholar 

  18. Friston KJ, Mechelli A, Turner R, and Price CJ. Nonlinear responses in fMRI: The Balloon model, Volterra kernels, and other hemodynamics. NeuroImage 2000;12:466–77..

    Article  PubMed  CAS  Google Scholar 

  19. Fliess M, Lamnabhi M, and Lamnabhi-Lagarrigue F. An algebraic approach to nonlinear functional expansions. IEEE Trans Circuits Syst 1983;30:554–570.

    Article  Google Scholar 

  20. Bendat JS. Nonlinear system analysis and identification from random data. John Wiley and Sons, New York USA, 1990.

    Google Scholar 

  21. Gerstein GL and Perkel DH. Simultaneously recorded trains of action potentials: Analysis and functional interpretation. Science 1969;164:828–830.

    Article  PubMed  CAS  Google Scholar 

  22. Aertsen A and Preißl H. Dynamics of activity and connectivity in physiological neuronal Networks. In “Non linear dynamics and neuronal networks” (H.G. Schuster, Ed.), VCH publishers, Inc., New York NY USA, 1991:281–302.

    Google Scholar 

  23. McIntosh AR and Gonzalez-Lima F. Structural equation modelling and its application to network analysis in functional brain imaging. Hum Brain Mapp 1994;2:2–22.

    Article  Google Scholar 

  24. Friston KJ, Frith CD, Liddle PF, and Frackowiak RSJ. Functional connectivity: The principal component analysis of large data sets. J Cereb Blood Flow Metab 1993;13:5–14.

    Article  PubMed  CAS  Google Scholar 

  25. Friston KJ, Poline J-B, Holmes AP, Frith CD, and Frackowiak RSJ. A multivariate analysis of PET activation studies. Hum Brain Mapp 1996;4:140–151.

    Article  PubMed  CAS  Google Scholar 

  26. Friston KJ, Frith CD, Fletcher P, Liddle PF, and Frackowiak RSJ. Functional topography: Multidimensional scaling and functional connectivity in the brain. Cerebral Cortex 1996;6:156–164.

    Article  PubMed  CAS  Google Scholar 

  27. Sychra JJ, Bandettini PA, Bhattacharya N, and Lin Q. Synthetic images by subspace transforms. I. Principal component images and related filters. Med Physics 1994;21:193–201.

    Article  CAS  Google Scholar 

  28. Biswal B, Yetkin FZ, Haughton VM, and Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Mag Res Med 1995;34:537–541.

    Article  CAS  Google Scholar 

  29. McKeown M, Jung T-P, Makeig S, Brown G, Kinderman S, Lee T-W, and Sejnowski T. Spatially independent activity patterns in functional MRI data during the Stroop colour naming task. Proc Natl Acad Sci 1998;95:803–810.

    Article  PubMed  CAS  Google Scholar 

  30. Baumgartner R, Scarth G, Teichtmeister C, Somorjai R, and Moser E. Fuzzy clustering of gradient-echo functional MRI in the human visual cortex. Part 1: Reproducibility. J Mag Res Imaging 1997;7:1094–1101.

    Article  CAS  Google Scholar 

  31. Friston KJ, Harrison L, and Penny W. Dynamic causal modelling. NeuroImage 2003;19:1273–1302.

    Article  PubMed  CAS  Google Scholar 

  32. Büchel C and Friston KJ. Modulation of connectivity in visual pathways by attention: Cortical interactions evaluated with structural equation modelling and fMRI. Cerebral Cortex 1997;7:768–778.

    Article  PubMed  Google Scholar 

  33. Harrison LM, Penny W, and Friston KJ. Multivariate autoregressive modelling of fMRI time series. NeuroImage 2003;19:1477–1491.

    Article  PubMed  CAS  Google Scholar 

  34. Friston KJ and Büchel C. Attentional modulation of effective connectivity from V2 to V5/MT in humans. Proc Natl Acad Sci U S A 2000;97:7591–7596.

    Article  PubMed  CAS  Google Scholar 

  35. David O and Friston KJ. A neural mass model for MEG/EEG: coupling and neuronal dynamics. NeuroImage 2003;20:1743–1755.

    Article  PubMed  Google Scholar 

  36. Felleman DJ and Van Essen DC. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1992;1:1–47.

    Article  Google Scholar 

  37. Jansen BH and Rit VG. Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol Cybern 1995;73:357–366.

    Article  PubMed  CAS  Google Scholar 

  38. David O, Kiebel SJ, Harrison LM, Mattout J, Kilner JM, and Friston KJ. Dynamic causal modelling of evoked responses in EEG and MEG. NeuroImage 2006;30:1255–1272.

    Article  PubMed  Google Scholar 

  39. Horwitz B, Friston KJ, and Taylor JG. Neural modelling and functional brain imaging: an overview. Neural Networks 2001;13:829–846.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl J. Friston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Friston, K.J. (2009). Dynamic Causal Modelling of Brain Responses. In: Filippi, M. (eds) fMRI Techniques and Protocols. Neuromethods, vol 41. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-919-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-919-2_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-918-5

  • Online ISBN: 978-1-60327-919-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics