Skip to main content

High-Field fMRI

  • Protocol
  • First Online:
fMRI Techniques and Protocols

Part of the book series: Neuromethods ((NM,volume 41))

  • 2084 Accesses

Summary

Imaging of human brain function is possible only through a few techniques of which magnetic resonance is the safest and most widely used. The soft tissue contrast and high resolution functional maps of the human brain are making a profound contribution to our understanding of the brain function. Resolution and strength of activation signal in fMRI images depends on the static magnetic field. This fact must be fully exploited by availing the highest field fMRI scanners for neurofunctional studies. During the last decade of the last century, field strength of human imaging was raised to 8 T. As a result, today commercial 7-T MRI scanners are available for harnessing the strongest possible signal from the brain neuronal response to external stimulations. Such achievement has involved development of many ancillary technologies and overcoming of many inherent technological and scientific challenges. In this chapter, advantages and challenges of the use of high-field scanners for fMRI studies involving human subjects are discussed. Among challenges, susceptibility artifacts, relaxation rates, and RF coil designs are discussed in details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lauterbur PC. Image formation by induced local interactions: Example employing nuclear magnetic resonance. Nature 1973;242:190–191.

    Article  CAS  Google Scholar 

  2. Hoult DI, Lauterbur PC. The sensitivity of the zeumatographic experiment involving human samples. J Magn Reson 1979;34:425–433.

    Article  CAS  Google Scholar 

  3. Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K. Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 1992;89:5951–5955.

    Article  PubMed  CAS  Google Scholar 

  4. Sadek JR, Hammeke TA. Functional neuroimaging in neurology and psychiatry. CNS Spectr 2002;7:286–290, 295–299.

    PubMed  Google Scholar 

  5. Yacoub E, Van De Moortele PF, Shmuel A, Ugˇurbil K. Signal and noise characteristics of Hahn SE and GE BOLD fMRI at 7 T in humans. Neuroimage 2005;24:738–750.

    Article  PubMed  Google Scholar 

  6. Duong TQ, Yacoub E, Adriany G, Hu X, Ugurbil K, Vaughan JT, Merkle H, Kim SG. High-resolution, spin-echo BOLD, and CBF fMRI at 4 and 7 T. Magn Reson Med 2002;48:589–593.

    Article  PubMed  Google Scholar 

  7. Pfeuffer J, Adriany G, Shmuel A, Yacoub E, Van De Moortele PF, Hu X, Ugurbil K. Perfusion-based high-resolution functional imaging in the human brain at 7 Tesla. Magn Reson Med 2002;47:903–911.

    Article  PubMed  Google Scholar 

  8. Ugˇ urbil K, Hu X, Chen W, Zhu XH, Kim SG, Georgopoulos A. Functional mapping in the human brain using high magnetic fields. Philos Trans R Soc Lond B Biol Sci 1999 29;354:1195–1213.

    Article  Google Scholar 

  9. Logothetis NK. What we can do and what we cannot do with fMRI. Nature 2008 12;453:869–878.

    Article  PubMed  CAS  Google Scholar 

  10. Goense JB, Zappe AC, Logothetis NK. High-resolution fMRI of macaque V1. Magn Reson Imaging 2007;25:740–747.

    Article  PubMed  Google Scholar 

  11. Shulman RD. Functional imaging studies: Linking mind and basic neuroscience. Am J Psychiatry 2001;158:11–20.

    Article  PubMed  CAS  Google Scholar 

  12. Bloch F. Nuclear induction. Phys Rev 1946;7:460–473.

    Article  Google Scholar 

  13. Pourcell EM, Torrey HC, Pound RV, Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 1946;69:37–38.

    Article  Google Scholar 

  14. Boskamp EB. Improved surface coil imaging in MR: Decoupling of the excitation and receiver coils. Radiology 198;157:449–452.

    Google Scholar 

  15. Hoult DI, Richards RE. The signal-to-noise ratio of nuclear magnetic resonance experiment. J Magn Reson 1976;24:71–85.

    Article  Google Scholar 

  16. Tropp J. The theory of the bird-cage resonator. J Magn Reson 1989;82:51–62.

    Article  Google Scholar 

  17. Bloembergen, Purcell EM, Pound RV. Relaxation effects in nuclear magnetic resonance absorption. Phys Rev 1948;73:679–746.

    Article  CAS  Google Scholar 

  18. Peters AM, Brookes MJ, Hoogenraad FG, Gowland PA, Francis ST, Morris PG, Bowtell R. T2* measurements in human brain at 1.5, 3 and 7 T. Magn Reson Imaging 2007;25:748–753.

    Article  PubMed  Google Scholar 

  19. Wansapura JP, Holland SK, Dunn RS, Ball WS Jr. NMR relaxation times in the human brain at 3.0 Tesla. J Magn Reson Imaging 1999;9:531–538.

    Article  PubMed  CAS  Google Scholar 

  20. Vymazal J, Righini A, Brooks RA, Canesi M, Mariani C, Leonardi M, Pezzoli G. T1 and T2 in the brain of healthy subjects, patients with Parkinson disease, and patients with multiple system atrophy: Relation to iron content. Radiology 1999;211:489–495.

    PubMed  CAS  Google Scholar 

  21. Liu F, Garland M, Duan Y, Stark RI, Xu D, Dong Z, Bansal R, Peterson BS, Kangarlu A. Study of the development of fetal baboon brain using magnetic resonance imaging at 3 Tesla. Neuroimage 2008;40:148–159.

    Article  PubMed  Google Scholar 

  22. Wright PJ, Mougin OE, Totman JJ, Peters AM, Brookes MJ, Coxon R, Morris PE, Clemence M, Francis ST, Bowtell RW,Gowland PA. Water proton T (1) measurements in brain tissue at 7, 3, and 1.5T using IR-EPI, IR-TSE, and MPRAGE: Results and optimization. MAGMA 2008;21:121–130.

    Article  PubMed  CAS  Google Scholar 

  23. Kim SG, Ugurbil K. High-resolution functional magnetic resonance imaging of the animal brain. Methods 2003;30:28–41.

    Article  PubMed  CAS  Google Scholar 

  24. Meltzer HY, McGurk SR. The effects of clozapine, risperidone, and olanzapine on cognitive function in schizophrenia. Schizophr Bull 1999;25:233–255.

    Article  PubMed  CAS  Google Scholar 

  25. Sadek JR, Hammeke TA. Functional neuroimaging in neurology and psychiatry. CNS Spectr 2002;7:286–290, 295–299.

    PubMed  Google Scholar 

  26. Kim SG, Fukuda M, Lessons from fMRI about mapping cortical columns. Neuroscientist 2008;14:287–299.

    Article  PubMed  Google Scholar 

  27. Yacoub E, Shmuel A, Logothetis N, Uğurbil K. Robust detection of ocular dominance columns in humans using Hahn Spin Echo BOLD functional MRI at 7 Tesla. Neuroimage 2007;37:1161–1177.

    Article  PubMed  Google Scholar 

  28. Yacoub E, Shmuel A, Pfeuffer J, Van De Moortele PF, Adriany G, Andersen P, Vaughan JT, Merkle H, Ugurbil K, Hu X. Imaging brain function in humans at 7 Tesla. Magn Reson Med 2001;45:588–594.

    Article  PubMed  CAS  Google Scholar 

  29. Mansfield P, Pykett IL, Morris PG. Human whole body line-scan imaging by NMR. Br J Radiol 1978;51:921–922.

    Article  PubMed  CAS  Google Scholar 

  30. Goense JB, Logothetis NK. Neurophysiology of the BOLD fMRI signal in awake monkeys. Curr Biol 2008;18:631–640.

    Article  PubMed  CAS  Google Scholar 

  31. Goense JB, Ku SP, Merkle H, Tolias AS, Logothetis NK. fMRI of the temporal lobe of the awake monkey at 7 T. Neuroimage 2008;39:1081–1093.

    Article  PubMed  Google Scholar 

  32. Farzaneh F, Riederer SJ, Pelc NJ. Analysis of T2 limitations and off-resonance effects on spatial resolution and artifacts in echo-planar imaging. Magn Reson Med 1990;14:123–139.

    Article  PubMed  CAS  Google Scholar 

  33. Yang QX, Smith MB, Briggs RW, Rycyna RE. Microimaging at 14 Tesla using GESEPI for removal of magnetic susceptibility artifacts in T(2)(*)-weighted image contrast. J Magn Reson 1999;141:1–6.

    Article  PubMed  Google Scholar 

  34. Yang QX, Wang J, Smith MB, Meadowcroft M, Sun X, Eslinger PJ, Golay X. Reduction of magnetic field inhomogeneity artifacts in echo planar imaging with SENSE and GESEPI at high field. Magn Reson Med 2004;52:1418–1423.

    Article  PubMed  Google Scholar 

  35. Chen NK, Wyrwicz AM. Removal of EPI Nyquist ghost artifacts with two-dimensional phase correction. Magn Reson Med 2004;51:1247–1253.

    Article  PubMed  Google Scholar 

  36. Schenck JF. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 1996;23:815–850.

    Article  PubMed  CAS  Google Scholar 

  37. Callaghan PT. Susceptibility-limited resolution in nuclear magnetic resonance microscopy. J Magn Reson 1990;87:304–318.

    Article  Google Scholar 

  38. Kangarlu A, Bourekas EC, Ray-Chaudhury A, Rammohan KW. Cerebral cortical lesions in multiple sclerosis detected by MR imaging at 8 Tesla. AJNR Am J Neuroradiol 2007;28:262–266.

    PubMed  CAS  Google Scholar 

  39. Filippi M, Rocca MA. Conventional MRI in multiple sclerosis. J Neuroimaging 2007;17 (Suppl 1):3S–9S.

    Article  PubMed  Google Scholar 

  40. Fazekas F, Soelberg-Sorensen P, Comi G, Filippi M. MRI to monitor treatment efficacy in multiple sclerosis. J Neuroimaging 2007;17(Suppl 1):50S–55S.

    Article  PubMed  Google Scholar 

  41. Christoforidis GA, Bourekas EC, Baujan M, Abduljalil AM, Kangarlu A, Spigos DG, Chakeres DW, Robitaille PM. High resolution MRI of the deep brain vascular anatomy at 8 Tesla: Susceptibility-based enhancement of the venous structures. J Comput Assist Tomogr 1999;23:857–866.

    Article  PubMed  CAS  Google Scholar 

  42. Bourekas EC, Christoforidis GA, Abduljalil AM, Kangarlu A, Chakeres DW, Spigos DG, Robitaille PM. High resolution MRI of the deep gray nuclei at 8 Tesla. J Comput Assist Tomogr 1999;23:867–874.

    Article  PubMed  CAS  Google Scholar 

  43. Davis TL, Kwong KK, Weisskopff RM, Rosen BR, Calibrated functional MRI: Mapping the dynamics of oxidative metabolism (hypercapniaycerebrovascular reactivity). Proc Natl Acad Sci USA 1998;95:1834–1839.

    Article  PubMed  CAS  Google Scholar 

  44. Yacoub E, Shmuel A, Pfeuffer J, Van De Moortele PF, Adriany G, Ugurbil K, Hu X. Investigation of the initial dip in fMRI at 7 Tesla. NMR Biomed 2001;14:408–412.

    Article  PubMed  CAS  Google Scholar 

  45. Krüger G, Glover GH. Physiological noise in oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 2001;46:631–637.

    Article  PubMed  Google Scholar 

  46. Wang SJ, Luo LM, Liang XY, Gui ZG, Chen CX. Estimation and removal of physiological noise from undersampled multi-slice fMRI data in image space. IEEE-EMBS 2005;27:1371–1373.

    Google Scholar 

  47. Krüger G. Glover GH, Physiological noise in oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 2001;46:631–637.

    Article  PubMed  Google Scholar 

  48. Hyde JS, Biswal BB, Jesmanowicz A. High-resolution fMRI using multislice partial k-space GR-EPI with cubic voxels. Magn Reson Med 2001;46:114–125.

    Article  PubMed  CAS  Google Scholar 

  49. Glover GH, Krüger G. Optimum voxel size in BOLD fMRI. Proc Intl Soc Magn Reson Med 2002;10:1395.

    Google Scholar 

  50. Mountscale VB. The columnar organization of the neocortex. Brain 1997;120:701–722.

    Article  Google Scholar 

  51. Triantafylloua C, Hogea RD, Wald LL. Effect of spatial smoothing on physiological noise in high-resolution fMRI. Neuroimage 2006;32:551–557.

    Article  Google Scholar 

  52. Duong TQ, Kim DS, Ugurbil K, Kim SG. Localized cerebral blood flow response at submillimeter columnar resolution. Proc Natl Acad Sci USA 2001;98:10904–10909.

    Article  PubMed  CAS  Google Scholar 

  53. Kim DS, Duong TQ, Kim SG. High-resolution mapping of isoorientation columns by fMRI. Nat Neurosci 2000;3:164–169.

    Article  PubMed  CAS  Google Scholar 

  54. Jezzard P, Clare S. Sources of distortion in functional MRI data. Hum Brain Mapp 1999;8:80–85

    Article  PubMed  CAS  Google Scholar 

  55. Speck O, Stadler J, Zaitsev M. High resolution single-shot EPI at 7T. MAGMA Magn Reson Mater in Phys Biol Med 2008;21:73–86.

    Google Scholar 

  56. Baertlein BA, Ozbay O, Ibrahim T, Lee R, Yu Y, Kangarlu A, Robitaille PM. Theoretical model for an MRI radio frequency resonator. IEEE Trans Biomed Eng 2000;47:535–546.

    Article  PubMed  CAS  Google Scholar 

  57. Ibrahim TS, Lee R, Baertlein BA, Kangarlu A, Robitaille PL. Application of finite difference time domain method for the design of birdcage RF head coils using multi-port excitations. Magn Reson Imaging 2000;18:733–742.

    Article  PubMed  CAS  Google Scholar 

  58. Ibrahim TS, Kangarlu A, Chakeress DW. Design and performance issues of RF coils utilized in ultra high field MRI: Experimental and numerical evaluations. IEEE Trans Biomed Eng 2005;52:1278–1284.

    Article  PubMed  Google Scholar 

  59. Kangarlu A, Baertlein BA, Lee R, Ibrahim T, Yang L, Abduljalil AM, Robitaille PM. Dielectric resonance phenomena in ultra high field MRI. J Comput Assist Tomogr 1999;23:821–831.

    Article  PubMed  CAS  Google Scholar 

  60. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: Sensitivity encoding for fast MRI. Magn Reson Med 1999;42:952–962.

    Article  PubMed  CAS  Google Scholar 

  61. Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radiofrequency coil arrays. Magn Reson Med 1997;38:591–603.

    Article  PubMed  CAS  Google Scholar 

  62. Katscher U, Börnert P, Leussler C, van den Brink JS. Transmit SENSE. Magn Reson Med 2003;49:144–150.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alayar Kangarlu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kangarlu, A. (2009). High-Field fMRI. In: Filippi, M. (eds) fMRI Techniques and Protocols. Neuromethods, vol 41. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-919-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-919-2_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-918-5

  • Online ISBN: 978-1-60327-919-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics