Skip to main content

fMRI in Psychiatric Disorders

  • Protocol
  • First Online:
fMRI Techniques and Protocols

Part of the book series: Neuromethods ((NM,volume 41))

Summary

Functional neuroimaging has become an important tool for clinical research, with the potentiality to provide information on psychiatric disease pathology and treatment response. We review functional magnetic resonance imaging (fMRI) research findings for six psychiatric disorders: schizophrenia, major depressive disorder, bipolar disorder, obsessive-compulsive disorder, posttraumatic stress disorder, and Alzheimer’s disease. Brain functional abnormalities and possible underlying mechanisms for disease symptoms are discussed, with a focus on future clinical implications for fMRI in psychiatric disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown GG, Perthen JE, Liu TT, Buxton RB. A primer on functional magnetic resonance imaging. Neuropsychol Rev 2007;17: 107–125.

    Article  PubMed  Google Scholar 

  2. Francati V, Vermetten E, Bremner JD. Functional neuroimaging studies in posttraumatic stress disorder: review of current methods and findings. Depress Anxiety 2007;24: 202–218.

    Article  PubMed  CAS  Google Scholar 

  3. Giardino ND, Friedman SD, Dager SR. Anxiety, respiration, and cerebral blood flow: implications for functional brain imaging. Compr Psychiatry 2007;48:103–112.

    Article  PubMed  Google Scholar 

  4. Yurgelun-Todd DA, Femia LA. Applications of fMRI to psychiatry. In: Functional MRI: basic principles and clinical applications, Faro SH M.F.,Editor. 2006, Springer Science + Business Media, Inc.: New York. pp 183–220.

    Google Scholar 

  5. Lai S, Hopkins AL, Haacke EM, et al. Identification of vascular structures as a major source of signal contrast in high resolution 2D and 3D functional activation imaging of the motor cortex at 1.5T: preliminary results. Magn Reson Med 1993;30: 387–392.

    Article  PubMed  CAS  Google Scholar 

  6. Saad ZS, Ropella KM, DeYoe EA, Bandettini PA. The spatial extent of the BOLD response. Neuroimage 2003;19:132–144.

    Article  PubMed  Google Scholar 

  7. Poulin MJ, Liang PJ, Robbins PA. Dynamics of the cerebral blood flow response to step changes in end-tidal PCO2 and PO2 in humans. J Appl Physiol 1996;81:1084–1095.

    PubMed  CAS  Google Scholar 

  8. Ide K, Poulin MJ. The relationship between middle cerebral artery blood velocity and end-tidal PCO2 in the hypocapnichypercapnic range in humans. J Appl Physiol 2003;95: 129–137.

    PubMed  Google Scholar 

  9. Rostrup E, Knudsen GM, Law I, Holm S, Larsson HB, Paulson OB. The relationship between cerebral blood flow and volume in humans. Neuroimage 2005;24:1–11.

    Article  PubMed  Google Scholar 

  10. Grubb RL, Jr., Raichle ME, Eichling JO, Ter-Pogossian MM. The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time. Stroke 1974;5:630–639.

    Article  PubMed  Google Scholar 

  11. Reiman EM, Raichle ME, Robins E, et al. The application of positron emission tomography to the study of panic disorder. Am J Psychiatry 1986;143:469–477.

    PubMed  CAS  Google Scholar 

  12. Aguirre GK, Detre JA, Wang J. Perfusion fMRI for functional neuroimaging. Int Rev Neurobiol 2005;66:213–236.

    Article  PubMed  Google Scholar 

  13. Liu TT, Brown GG. Measurement of cerebral perfusion with arterial spin labeling. Part 1. Methods. J Int Neuropsychol Soc 2007;13: 517–525.

    Article  PubMed  Google Scholar 

  14. Rao SM, Salmeron BJ, Durgerian S, et al. Effects of methylphenidate on functional MRI blood-oxygen-level-dependent contrast. Am J Psychiatry 2000;157:1697–1699.

    Article  PubMed  CAS  Google Scholar 

  15. Mildner T, Zysset S, Trampel R, Driesel W, Möller HE. Towards quantification of blood-flow changes during cognitive task activation using perfusion-based fMRI. Neuroimage 2005;27:919–926.

    Article  PubMed  Google Scholar 

  16. Tjandra T, Brooks JC, Figueiredo P, Wise R, Matthews PM, Tracey I.Quantitative assessment of the reproducibility of functional activation measured with BOLD and MR perfusion imaging: implications for clinical trial design. Neuroimage 2005;27:393–401.

    Article  PubMed  Google Scholar 

  17. Mayberg HS. Modulating dysfunctional limbic-cortical circuits in depression: towards development of brain-based algorithms for diagnosis and optimised treatment. Br Med Bull 2003;65:193–207.

    Article  PubMed  Google Scholar 

  18. Deckersbach T, Dougherty DD, Rauch SL. Functional imaging of mood and anxiety disorders. J Neuroimaging 2006;16:1–10.

    Article  PubMed  Google Scholar 

  19. Fu CH, Williams SC, Cleare AJ, et al. Attenuation of the neural response to sad faces in major depression by antidepressant treatment: a prospective, event-related functional magnetic resonance imaging study. Arch Gen Psychiatry 2004;61:877–889.

    Article  PubMed  Google Scholar 

  20. Yurgelun-Todd DA, Coyle JT, Gruber SA, et al. Functional magnetic resonance imaging studies of schizophrenic patients during word production: effects of D-cycloserine. Psychiatry Res 2005;138:23–31.

    Article  PubMed  CAS  Google Scholar 

  21. Hempel A, Hempel E, Schönknecht P, Stippich C, Schröder J. Impairment in basal limbic function in schizophrenia during affect recognition. Psychiatry Res 2003;122:115–124.

    Article  PubMed  Google Scholar 

  22. Takahashi H, Koeda M, Oda K, Matsuda T, et al. An fMRI study of differential neural response to affective pictures in schizophrenia. Neuroimage 2004;22:1247–1254.

    Article  PubMed  Google Scholar 

  23. Williams LM, Das P, Harris AW, et al. Dysregulation of arousal and amygdala-prefrontal systems in paranoid schizophrenia. Am J Psychiatry 2004;161:480–489.

    Article  PubMed  Google Scholar 

  24. Hofer A, Weiss EM, Golaszewski SM, et al. An FMRI study of episodic encoding and recognition of words in patients with schizophrenia in remission. Am J Psychiatry 2003;160: 911–918.

    Article  PubMed  Google Scholar 

  25. Manoach DS, Gollub RL, Benson ES, et al. Schizophrenic subjects show aberrant fMRI activation of dorsolateral prefrontal cortex and basal ganglia during working memory performance. Biol Psychiatry 2000;48: 99–109.

    Article  PubMed  CAS  Google Scholar 

  26. Ragland JD, Gur RC, Valdez J, et al. Event-related fMRI of frontotemporal activity during word encoding and recognition in schizophrenia. Am J Psychiatry 2004;161:1004–1015.

    Article  Google Scholar 

  27. Rubia K, Russel T, Bullmore ET, et al. An fMRI study of reduced left prefrontal activation in schizophrenia during normal inhibitory function. Schizophr Res 2001;52:47–55.

    Article  PubMed  CAS  Google Scholar 

  28. Vink M., et al Striatal dysfunction in schizophrenia and unaffected relatives. Biol Psychiatry 2006;60(1):32–39.

    Article  PubMed  Google Scholar 

  29. Braver TS, et al Direct comparison of prefrontal cortex regions engaged by working and long-term memory tasks. Neuroimage 2001;14(1 Pt 1):48–59.

    Article  PubMed  CAS  Google Scholar 

  30. Cohen NJ, et al Hippocampal system and declarative (relational) memory: summarizing the data from functional neuroimaging studies. Hippocampus 1999;9(1):83–98.

    Article  PubMed  CAS  Google Scholar 

  31. Nyberg L, et al Common prefrontal activations during working memory, episodic memory, and semantic memory. Neuropsychologia 2003;41(3):371–377.

    Article  PubMed  Google Scholar 

  32. Morey RA, et al Imaging frontostriatal function in ultra-high-risk, early, and chronic schizophrenia during executive processing. Arch Gen Psychiatry 2005;62(3):254–262.

    Article  PubMed  Google Scholar 

  33. Honey GD, et al Ketamine disrupts frontal and hippocampal contribution to encoding and retrieval of episodic memory: an fMRI study. Cereb Cortex 2005;15(6):749–759.

    Article  PubMed  CAS  Google Scholar 

  34. Habel U, et al Genetic load on amygdala hypofunction during sadness in nonaffected brothers of schizophrenia patients. Am J Psychiatry 2004;161(10):1806–1813.

    Article  PubMed  Google Scholar 

  35. Kubicki M, et al An fMRI study of semantic processing in men with schizophrenia. Neuroimage 2003;20(4):1923–1933.

    Article  PubMed  CAS  Google Scholar 

  36. Drevets WC. Neuroimaging studies of mood disorders. Biol Psychiatry 2000;48(8): 813–829.

    Article  PubMed  CAS  Google Scholar 

  37. Mayberg HS. Limbic-cortical dysregulation: a proposed model of depression. J Neuropsychiatry Clin Neurosci 1997;9(3):471–481.

    PubMed  CAS  Google Scholar 

  38. Mayberg HS, et al Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry 1999;156(5):675–682.

    PubMed  CAS  Google Scholar 

  39. Baxter LR, Jr., et al Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch Gen Psychiatry 1989;46(3):243–250.

    Article  PubMed  CAS  Google Scholar 

  40. Bench CJ, et al The anatomy of melancholia – focal abnormalities of cerebral blood flow in major depression. Psychol Med 1992;22(3): 607–615.

    Article  PubMed  CAS  Google Scholar 

  41. Drevets WC, et al Subgenual prefrontal cortex abnormalities in mood disorders. Nature 1997;386(6627):824–827.

    Article  PubMed  CAS  Google Scholar 

  42. Liotti M, et al Differential limbic–cortical correlates of sadness and anxiety in healthy subjects: implications for affective disorders. Biol Psychiatry 2000;48(1):30–42.

    Article  PubMed  CAS  Google Scholar 

  43. Siegle GJ, et al Can’t shake that feeling: event-related fMRI assessment of sustained amygdala activity in response to emotional information in depressed individuals. Biol Psychiatry 2002;51(9):693–707.

    Article  PubMed  Google Scholar 

  44. Siegle GJ, et al Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression: related and independent features. Biol Psychiatry 2007;61(2):198–209.

    Article  PubMed  Google Scholar 

  45. Surguladze SA, et al Recognition accuracy and response bias to happy and sad facial expressions in patients with major depression. Neuropsychology 2004;18(2): 212–218.

    Article  PubMed  Google Scholar 

  46. Walter H, et al Increased left prefrontal activation in patients with unipolar depression: an event-related, parametric, performance-controlled fMRI study. J Affect Disord 2007;101(1–3):175–185.

    Article  PubMed  Google Scholar 

  47. Sheline YI, et al Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study. Biol Psychiatry 2001;50(9): 651–658.

    Article  PubMed  CAS  Google Scholar 

  48. Del-Ben CM, et al The effect of citalopram pretreatment on neuronal responses to neuropsychological tasks in normal volunteers: an FMRI study. Neuropsychopharmacology 2005;30(9):1724–1734.

    Article  PubMed  CAS  Google Scholar 

  49. Vollm B, et al Serotonergic modulation of neuronal responses to behavioural inhibition and reinforcing stimuli: an fMRI study in healthy volunteers. Eur J Neurosci 2006;23(2):552–560.

    Article  PubMed  Google Scholar 

  50. Chen CH, et al Brain imaging correlates of depressive symptom severity and predictors of symptom improvement after antidepressant treatment. Biol Psychiatry 2007;62(5): 407–414.

    Article  PubMed  CAS  Google Scholar 

  51. Strakowski SM, Delbello MP, Adler CM. The functional neuroanatomy of bipolar disorder: a review of neuroimaging findings. Mol Psychiatry 2005;10(1):105–116.

    Article  PubMed  CAS  Google Scholar 

  52. Yurgelun-Todd DA Ross AJ. Functional magnetic resonance imaging studies in bipolar disorder. CNS Spectr 2006;11(4):287–297.

    PubMed  Google Scholar 

  53. Blumberg HP, et al A functional magnetic resonance imaging study of bipolar disorder: state- and trait-related dysfunction in ventral prefrontal cortices. Arch Gen Psychiatry 2003;60(6):601–609.

    Article  PubMed  Google Scholar 

  54. Lagopoulos J, Ivanovski B Malhi GS. An event-related functional MRI study of working memory in euthymic bipolar disorder. J Psychiatry Neurosci 2007;32(3):174–184.

    PubMed  Google Scholar 

  55. Monks PJ, et al A functional MRI study of working memory task in euthymic bipolar disorder: evidence for task-specific dysfunction. Bipolar Disord 2004;6(6):550–564.

    Article  PubMed  Google Scholar 

  56. Frangou S. The Maudsley bipolar disorder project. Epilepsia 2005;46 (Suppl 4):19–25.

    Article  PubMed  Google Scholar 

  57. Adler CM, et al Changes in neuronal activation in patients with bipolar disorder during performance of a working memory task. Bipolar Disord 2004;6(6):540–549.

    Article  PubMed  Google Scholar 

  58. Chang K, et al Anomalous prefrontal-subcortical activation in familial pediatric bipolar disorder: a functional magnetic resonance imaging investigation. Arch Gen Psychiatry 2004;61(8):781–792.

    Article  PubMed  Google Scholar 

  59. Gruber SA, Rogowska J, Yurgelun-Todd DA. Decreased activation of the anterior cingulate in bipolar patients: an fMRI study. J Affect Disord 2004;82(2):191–201.

    Article  PubMed  Google Scholar 

  60. Strakowski SM, et al Abnormal FMRI brain activation in euthymic bipolar disorder patients during a counting Stroop interference task. Am J Psychiatry 2005;162(9):1697–1705.

    Article  PubMed  Google Scholar 

  61. Lawrence NS, et al Subcortical and ventral prefrontal cortical neural responses to facial expressions distinguish patients with bipolar disorder and major depression. Biol Psychiatry 2004;55(6):578–587.

    Article  PubMed  Google Scholar 

  62. Yurgelun-Todd DA, et al fMRI during affect discrimination in bipolar affective disorder. Bipolar Disord 2000;2(3 Pt 2):237–248.

    Article  PubMed  CAS  Google Scholar 

  63. Blumberg HP, et al Preliminary evidence for medication effects on functional abnormalities in the amygdala and anterior cingulate in bipolar disorder. Psychopharmacology (Berl) 2005;183(3):308–313.

    Article  CAS  Google Scholar 

  64. Pavuluri MN, et al Affective neural circuitry during facial emotion processing in pediatric bipolar disorder. Biol Psychiatry 2007;62(2): 158–167.

    Article  PubMed  Google Scholar 

  65. Malhi GS, et al Cognitive generation of affect in hypomania: an fMRI study. Bipolar Disord 2004;6(4):271–285.

    Article  PubMed  Google Scholar 

  66. Malhi GS, et al Cognitive generation of affect in bipolar depression: an fMRI study. Eur J Neurosci 2004;19(3):741–754.

    Article  PubMed  Google Scholar 

  67. Whiteside SP, Port JD, Abramowitz JS. A meta-analysis of functional neuroimaging in obsessive-compulsive disorder. Psychiatry Res 2004;132(1):69–79.

    Article  PubMed  Google Scholar 

  68. Mataix-Cols D, Rosario-Campos MC, Leckman JF. A multidimensional model of obsessive-compulsive disorder. Am J Psychiatry 2005;162(2):228–238.

    Article  PubMed  Google Scholar 

  69. Saxena S, et al Cerebral metabolism in major depression and obsessive-compulsive disorder occurring separately and concurrently. Biol Psychiatry 2001;50(3):159–170.

    Article  PubMed  CAS  Google Scholar 

  70. Mitterschiffthaler MT, et al Applications of functional magnetic resonance imaging in psychiatry. J Magn Reson Imaging 2006;23(6): 851–861.

    Article  PubMed  Google Scholar 

  71. Saxena S, et al Neuroimaging and frontal-subcortical circuitry in obsessive-compulsive disorder. Br J Psychiatry Suppl 1998(35): 26–37.

    Google Scholar 

  72. Remijnse PL, et al Reduced orbitofrontal-striatal activity on a reversal learning task in obsessive-compulsive disorder. Arch Gen Psychiatry 2006;63(11):1225–1236.

    Article  PubMed  Google Scholar 

  73. Roth RM, et al Event-related functional magnetic resonance imaging of response inhibition in obsessive-compulsive disorder. Biol Psychiatry 2007;62(8):901–909.

    Article  PubMed  Google Scholar 

  74. Purcell R, et al Cognitive deficits in obsessive-compulsive disorder on tests of frontal-striatal function. Biol Psychiatry 1998;43(5): 348–357.

    Article  PubMed  CAS  Google Scholar 

  75. van den Heuvel OA, et al Frontal-striatal dysfunction during planning in obsessive-compulsive disorder. Arch Gen Psychiatry 2005;62(3):301–309.

    Article  PubMed  Google Scholar 

  76. Gilbert AR, et al Decrease in thalamic volumes of pediatric patients with obsessive-compulsive disorder who are taking paroxetine. Arch Gen Psychiatry 2000;57(5): 449–456.

    Article  PubMed  CAS  Google Scholar 

  77. Kim JJ, et al Grey matter abnormalities in obsessive-compulsive disorder: statistical parametric mapping of segmented magnetic resonance images. Br J Psychiatry 2001;179: 330–334.

    Article  PubMed  CAS  Google Scholar 

  78. Lacerda AL, et al Elevated thalamic and prefrontal regional cerebral blood flow in obsessive-compulsive disorder: a SPECT study. Psychiatry Res 2003;123(2):125–134.

    Article  PubMed  Google Scholar 

  79. Saxena S Rauch SL. Functional neuroimaging and the neuroanatomy of obsessive-compulsive disorder. Psychiatr Clin North Am 2000;23(3):563–586.

    Article  PubMed  CAS  Google Scholar 

  80. Rauch SL, et al The functional neuroanatomy of anxiety: a study of three disorders using positron emission tomography and symptom provocation. Biol Psychiatry 1997;42(6): 446–452.

    Article  PubMed  CAS  Google Scholar 

  81. Charney DS, et al Psychobiologic mechanisms of posttraumatic stress disorder. Arch Gen Psychiatry 1993;50(4):295–305.

    Article  PubMed  CAS  Google Scholar 

  82. Charney DS. Psychobiological mechanisms of resilience and vulnerability: implications for successful adaptation to extreme stress. Am J Psychiatry 2004;161(2):195–216.

    Article  PubMed  Google Scholar 

  83. Quirk GJ, Gehlert DR. Inhibition of the amygdala: key to pathological states? Ann N Y Acad Sci 2003;985:263–272.

    Article  PubMed  CAS  Google Scholar 

  84. Stein MB, et al Increased amygdala and insula activation during emotion processing in anxiety-prone subjects. Am J Psychiatry 2007;164(2):318–327.

    Article  PubMed  Google Scholar 

  85. Geuze E, Vermetten E, Bremner JD. MR-based in vivo hippocampal volumetrics. 2. Findings in neuropsychiatric disorders. Mol Psychiatry 2005;10(2):160–184.

    Article  PubMed  CAS  Google Scholar 

  86. Bremner JD. Neuroimaging of childhood trauma. Semin Clin Neuropsychiatry 2002;7(2):104–112.

    Article  PubMed  Google Scholar 

  87. Bremner JD, et al MRI and PET study of deficits in hippocampal structure and function in women with childhood sexual abuse and posttraumatic stress disorder. Am J Psychiatry 2003;160(5):924–932.

    Article  PubMed  Google Scholar 

  88. Gilbertson MW, et al Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nat Neurosci 2002;5(11):1242–1247.

    Article  PubMed  CAS  Google Scholar 

  89. Rauch SL, et al Exaggerated amygdala response to masked facial stimuli in posttraumatic stress disorder: a functional MRI study. Biol Psychiatry 2000;47(9):769–776.

    Article  PubMed  CAS  Google Scholar 

  90. Whalen PJ, et al Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. J Neurosci 1998;18(1):411–418.

    PubMed  CAS  Google Scholar 

  91. Lanius RA, et al Functional connectivity of dissociative responses in posttraumatic stress disorder: a functional magnetic resonance imaging investigation. Biol Psychiatry 2005;57(8):873–884.

    Article  PubMed  Google Scholar 

  92. Vermetten E, et al Long-term treatment with paroxetine increases verbal declarative memory and hippocampal volume in posttraumatic stress disorder. Biol Psychiatry 2003;54(7):693–702.

    Article  PubMed  CAS  Google Scholar 

  93. Lanius RA, et al Neural correlates of traumatic memories in posttraumatic stress disorder: a functional MRI investigation. Am J Psychiatry 2001;158(11):1920–1922.

    Article  PubMed  CAS  Google Scholar 

  94. Pitman RK, Shin LM, Rauch SL. Investigating the pathogenesis of posttraumatic stress disorder with neuroimaging. J Clin Psychiatry 2001;62 (Suppl 17):47–54.

    PubMed  Google Scholar 

  95. Villarreal G, King CY. Brain imaging in posttraumatic stress disorder. Semin Clin Neuropsychiatry 2001;6(2):131–145.

    Article  PubMed  CAS  Google Scholar 

  96. Hendler T, et al Sensing the invisible: differential sensitivity of visual cortex and amygdala to traumatic context. Neuroimage 2003;19(3):587–600.

    Article  PubMed  Google Scholar 

  97. Driessen M, et al Posttraumatic stress disorder and fMRI activation patterns of traumatic memory in patients with borderline personality disorder. Biol Psychiatry 2004;55(6): 603–611.

    Article  PubMed  Google Scholar 

  98. Protopopescu X, et al Differential time courses and specificity of amygdala activity in posttraumatic stress disorder subjects and normal control subjects. Biol Psychiatry 2005;57(5):464–473.

    Article  PubMed  Google Scholar 

  99. Morgan MA, LeDoux JE. Differential contribution of dorsal and ventral medial prefrontal cortex to the acquisition and extinction of conditioned fear in rats. Behav Neurosci 1995;109(4):681–688.

    Article  PubMed  CAS  Google Scholar 

  100. Quirk GJ, et al The role of ventromedial prefrontal cortex in the recovery of extinguished fear. J Neurosci 2000;20(16): 6225–6231.

    PubMed  CAS  Google Scholar 

  101. Santini E, et al Consolidation of fear extinction requires protein synthesis in the medial prefrontal cortex. J Neurosci 2004;24(25): 5704–5710.

    Article  PubMed  CAS  Google Scholar 

  102. Morgan MA, Romanski LM, LeDoux JE. Extinction of emotional learning: contribution of medial prefrontal cortex. Neurosci Lett 1993;163(1):109–113.

    Article  PubMed  CAS  Google Scholar 

  103. Lanius RA, et al Recall of emotional states in posttraumatic stress disorder: an fMRI investigation. Biol Psychiatry 2003;53(3): 204–210.

    Article  PubMed  Google Scholar 

  104. Shin LM, et al An fMRI study of anterior cingulate function in posttraumatic stress disorder. Biol Psychiatry 2001;50(12):932–942.

    Article  PubMed  CAS  Google Scholar 

  105. Shin LM, et al A functional magnetic resonance imaging study of amygdala and medial prefrontal cortex responses to overtly presented fearful faces in posttraumatic stress disorder. Arch Gen Psychiatry 2005;62(3): 273–281.

    Article  PubMed  Google Scholar 

  106. Williams LM, et al Trauma modulates amygdala and medial prefrontal responses to consciously attended fear. Neuroimage 2006;29(2):347–357.

    Article  PubMed  Google Scholar 

  107. Golier JA, et al Memory performance in Holocaust survivors with posttraumatic stress disorder. Am J Psychiatry 2002;159(10):1682–1688.

    Article  PubMed  Google Scholar 

  108. Rauch SL, Shin LM, Phelps EA. Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research – past, present, and future. Biol Psychiatry 2006;60(4):376–382.

    Article  PubMed  Google Scholar 

  109. Shin LM, et al Hippocampal function in posttraumatic stress disorder. Hippocampus 2004;14(3):292–300.

    Article  PubMed  Google Scholar 

  110. Vermetten E, Bremner JD. Circuits and systems in stress. II. Applications to neurobiology and treatment in posttraumatic stress disorder. Depress Anxiety 2002;16(1):14–38.

    Article  PubMed  Google Scholar 

  111. Bremner JD, et al Neural correlates of memories of childhood sexual abuse in women with and without posttraumatic stress disorder. Am J Psychiatry 1999;156(11): 1787–1795.

    PubMed  CAS  Google Scholar 

  112. Shin LM, et al Regional cerebral blood flow during script-driven imagery in childhood sexual abuse-related PTSD: a PET investigation. Am J Psychiatry 1999;156(4): 575–584.

    PubMed  CAS  Google Scholar 

  113. Semple WE, et al Higher brain blood flow at amygdala and lower frontal cortex blood flow in PTSD patients with comorbid cocaine and alcohol abuse compared with normals. Psychiatry 2000;63(1):65–74.

    PubMed  CAS  Google Scholar 

  114. Sair HI, Doraiswamy PM, Petrella JR. In vivo amyloid imaging in Alzheimer’s disease. Neuroradiology 2004;46(2):93–104.

    Article  PubMed  CAS  Google Scholar 

  115. Rice DP, et al Prevalence, costs, and treatment of Alzheimer’s disease and related dementia: a managed care perspective. Am J Manag Care 2001;7(8):809–818.

    PubMed  CAS  Google Scholar 

  116. Murphy SL Deaths: final data for 1998. Natl Vital Stat Rep 2000;48(11):1–105.

    PubMed  CAS  Google Scholar 

  117. Masters CL, Beyreuther K. Alzheimer’s disease. BMJ 1998;316(7129):446–448.

    Article  PubMed  CAS  Google Scholar 

  118. Masters CL, et al Molecular mechanisms for Alzheimer’s disease: implications for neuroimaging and therapeutics. J Neurochem 2006;97(6):1700–1725.

    Article  PubMed  CAS  Google Scholar 

  119. McKhann G, et al Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984;34(7):939–944.

    Article  PubMed  CAS  Google Scholar 

  120. Knopman D, et al Cardiovascular risk factors and cognitive decline in middle-aged adults. Neurology 2001;56(1):42–48.

    Article  PubMed  CAS  Google Scholar 

  121. Burns A, Russell E, Page S. New drugs for Alzheimer’s disease. Br J Psychiatry 1999;174:476–479.

    Article  PubMed  CAS  Google Scholar 

  122. Coimbra A, Williams DS, Hostetler ED. The role of MRI and PET/SPECT in Alzheimer’s disease. Curr Top Med Chem 2006;6(6): 629–647.

    Article  PubMed  CAS  Google Scholar 

  123. Lee BC, et al Imaging of Alzheimer’s disease. J Neuroimaging 2003;13(3):199–214.

    PubMed  Google Scholar 

  124. Mosconi L, et al Magnetic resonance and PET studies in the early diagnosis of Alzheimer’s disease. Expert Rev Neurother 2004;4(5):831–849.

    Article  PubMed  Google Scholar 

  125. Schmidt B, Braun HA, Narlawar R. Drug development and PET-diagnostics for Alzheimer’s disease. Curr Med Chem 2005;12(14): 1677–1695.

    Article  PubMed  CAS  Google Scholar 

  126. Ross MH, et al Age-related reduction in functional MRI response to photic stimulation. Neurology 1997;48(1):173–176.

    Article  PubMed  CAS  Google Scholar 

  127. Yousem DM, et al The effect of age on odor-stimulated functional MR imaging. AJNR Am J Neuroradiol 1999;20(4):600–608.

    PubMed  CAS  Google Scholar 

  128. D’Esposito M, Weksler ME. Brain aging and memory: new findings help differentiate forgetfulness and dementia. Geriatrics 2000;55(6):55–58, 61–62.

    PubMed  Google Scholar 

  129. Prvulovic D, et al Functional activation imaging in aging and dementia. Psychiatry Res 2005;140(2):97–113.

    Article  PubMed  Google Scholar 

  130. Cerf-Ducastel B, Murphy C. FMRI brain activation in response to odors is reduced in primary olfactory areas of elderly subjects. Brain Res 2003;986(1–2):39–53.

    Article  PubMed  CAS  Google Scholar 

  131. Grady CL, et al Subgroups in dementia of the Alzheimer type identified using positron emission tomography. J Neuropsychiatry Clin Neurosci 1990;2(4):373–384.

    PubMed  CAS  Google Scholar 

  132. Bookheimer SY, et al Patterns of brain activation in people at risk for Alzheimer’s disease. N Engl J Med 2000;343(7):450–456.

    Article  PubMed  CAS  Google Scholar 

  133. Smith CD, et al Women at risk for AD show increased parietal activation during a fluency task. Neurology 2002;58(8):1197–1202.

    Article  PubMed  CAS  Google Scholar 

  134. Kato T, Knopman D, Liu H. Dissociation of regional activation in mild AD during visual encoding: a functional MRI study. Neurology 2001;57(5):812–816.

    Article  PubMed  CAS  Google Scholar 

  135. Petrella JR, et al Prefrontal activation patterns in subjects at risk for Alzheimer disease. Am J Geriatr Psychiatry 2002;10(1):112–113.

    PubMed  Google Scholar 

  136. Small SA, et al Differential regional dysfunction of the hippocampal formation among elderly with memory decline and Alzheimer’s disease. Ann Neurol 1999;45(4): 466–472.

    Article  PubMed  CAS  Google Scholar 

  137. Dickerson BC, et al Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 2005;65(3):404–411.

    Article  PubMed  CAS  Google Scholar 

  138. Sperling RA, et al fMRI studies of associative encoding in young and elderly controls and mild Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2003;74(1):44–50.

    Article  PubMed  CAS  Google Scholar 

  139. Grady CL, et al Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer’s disease. J Neurosci 2003;23(3):986–993.

    PubMed  CAS  Google Scholar 

  140. Pariente J, et al. Alzheimer’s patients engage an alternative network during a memory task. Ann Neurol 2005;58(6):870–879.

    Article  PubMed  Google Scholar 

  141. Juckel G, et al. Dysfunction of ventral striatal reward prediction in schizophrenic patients treated with typical, not atypical, ­neuroleptics. Psychopharmacology (Berlin) 2006;187 (2):222–228.

    Article  CAS  Google Scholar 

  142. Wagner G, et al. Cortical inefficiency in patients with unipolar depression: an event-related fMRI study with the Stroop task. Biol Psychiatry 2006;59(10):958–965.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Perry F. Renshaw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Habecker, E.L., Daniels, M.A., Renshaw, P.F. (2009). fMRI in Psychiatric Disorders. In: Filippi, M. (eds) fMRI Techniques and Protocols. Neuromethods, vol 41. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-919-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-919-2_21

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-918-5

  • Online ISBN: 978-1-60327-919-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics