Skip to main content

fMRI of Pain

  • Protocol
  • First Online:
fMRI Techniques and Protocols

Part of the book series: Neuromethods ((NM,volume 41))

Summary

The field of pain research has progressed immensely due to the advancement of brain imaging techniques. The initial goal of this research was to expand our understanding of the cerebral mechanisms underlying the perception of pain; more recently the research objectives have shifted toward chronic pain – understanding its origins, developing methods for its diagnosis, and exploring potential avenues for its treatment. While several different neuroimaging approaches have certain advantages for the study of pain, fMRI has ultimately become the most widely utilized imaging technique over the past decade because of its noninvasive nature, high-temporal and spatial resolution, and general availability; thus, the following chapter will focus on fMRI and the special aspects of this technique that are particular to pain research. Subheading 1 begins with a brief review on the spinal pathways and neuroanatomical regions involved in pain processing, and highlights the novel information that has been gained about these structures and their function through the use of fMRI and other neuroimaging techniques. Subheading 2 reviews a few of the aspects associated with the blood-oxygen-level-dependent signal commonly used in fMRI, as they apply to the particular challenges of pain research. Likewise, Subheading 3 summarizes some of the special considerations of experimental design and statistical analysis that are encountered in pain research and their applications to fMRI studies. Subheading 4 reviews special applications of fMRI for the study of higher cognitive processes implicated in pain processing, including pain empathy and cognitive reappraisal of one’s own pain perception. The chapter concludes with Subheading 5, exploring some of the future prospects of fMRI techniques and new applications related to pain research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Penfield W, Bouldrey E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 1937;60:389–443.

    Article  Google Scholar 

  2. Head H, Holmes G. Sensory disturbances from cerebral lesions. Brain 1911;34:102.

    Article  Google Scholar 

  3. Talbot JD, Marrett S, Evans AC, Meyer E, Bushnell MC, Duncan GH. Multiple representations of pain in human cerebral cortex. Science 1991;251:1355–1358.

    Article  PubMed  CAS  Google Scholar 

  4. Jones AK, Brown WD, Friston KJ, Qi LY, Frackowiak RS. Cortical and subcortical localization of response to pain in man using positron emission tomography. Proc Biol Sci 1991;244:39–44.

    Article  PubMed  CAS  Google Scholar 

  5. Apkarian AV, Stea RA, Manglos SH, Szeverenyi NM, King RB, Thomas FD. Persistent pain inhibits contralateral somatosensory cortical activity in humans. Neurosci Lett 1992;140:141–147.

    Article  PubMed  CAS  Google Scholar 

  6. Davis KD, Wood ML, Crawley AP, Mikulis DJ. fMRI of human somatosensory and cingulate cortex during painful electrical nerve stimulation. Neuroreport 1995;7:321–325.

    PubMed  CAS  Google Scholar 

  7. Flor H. The functional organization of the brain in chronic pain. Prog Brain Res 2000;129:313–322.

    Article  PubMed  CAS  Google Scholar 

  8. deCharms RC, Maeda F, Glover GH, Ludlow D, Pauly JM, Soneji D et al. Control over brain activation and pain learned by using real-time functional MRI. Proc Natl Acad Sci U S A 2005;102(51):18626–18631.

    Article  PubMed  CAS  Google Scholar 

  9. Willis WD, Jr. The pain system. The neural basis of nociceptive transmission in the mammalian nervous system. Pain Headache 1985;8:1–346.

    PubMed  Google Scholar 

  10. Adriaensen H, Gybels J, Handwerker HO, Van Hees J. Response properties of thin myelinated (A-delta) fibers in human skin nerves. J Neurophysiol 1983;49:111–122.

    PubMed  CAS  Google Scholar 

  11. Ochoa J, Torebjork E. Sensations evoked by intraneural microstimulation of C nociceptor fibres in human skin nerves. J Physiol 1989;415:583–599.

    PubMed  CAS  Google Scholar 

  12. Cervero F, Iggo A. The substantia gelatinosa of the spinal cord: a critical review. Brain 1980;103:717–772.

    Article  PubMed  CAS  Google Scholar 

  13. Wilson P, Kitchener PD. Plasticity of cutaneous primary afferent projections to the spinal dorsal horn. Prog Neurobiol 1996;48:105–129.

    Article  PubMed  CAS  Google Scholar 

  14. Boivie J. An anatomical reinvestigation of the termination of the spinothalamic tract in the monkey. J Comp Neurol 1979;186:343–369.

    Article  PubMed  CAS  Google Scholar 

  15. Craig AD, Bushnell MC, Zhang ET, Blomqvist A. A thalamic nucleus specific for pain and temperature sensation. Nature 1994;372:770–773.

    Article  PubMed  CAS  Google Scholar 

  16. Craig AD. Distribution of trigeminothalamic and spinothalamic lamina I terminations in the macaque monkey. J Comp Neurol 2004;477:119–148.

    Article  PubMed  CAS  Google Scholar 

  17. Ma W, Peschanski M, Ralston HJ, III. Fine structure of the spinothalamic projections to the central lateral nucleus of the rat thalamus. Brain Res 1987;414:187–191.

    Article  PubMed  CAS  Google Scholar 

  18. Applebaum AE, Leonard RB, Kenshalo DR, Jr., Martin RF, Willis WD. Nuclei in which functionally identified spinothalamic tract neurons terminate. J Comp Neurol 1979;188:575–585.

    Article  PubMed  CAS  Google Scholar 

  19. Graziano A, Jones EG. Widespread thalamic terminations of fibers arising in the superficial medullary dorsal horn of monkeys and their relation to calbindin immunoreactivity. J Neurosci 2004;24:248–256.

    Article  PubMed  CAS  Google Scholar 

  20. Bromm B, Treede RD. Nerve fibre discharges, cerebral potentials and sensations induced by CO2 laser stimulation. Hum Neurobiol 1984;3:33–40.

    PubMed  CAS  Google Scholar 

  21. Carmon A, Dotan Y, Sarne Y. Correlation of subjective pain experience with cerebral evoked responses to noxious thermal stimulations. Exp Brain Res 1978;33:445–453.

    Article  PubMed  CAS  Google Scholar 

  22. Iannetti GD, Leandri M, Truini A, Zambreanu L, Cruccu G, Tracey I. A[delta] nociceptor response to laser stimuli: selective effect of stimulus duration on skin temperature, brain potentials and pain perception. Clin Neurophysiol 2004;115:2629–2637.

    Article  PubMed  CAS  Google Scholar 

  23. Spiegel J, Hansen C, Treede R-D. Clinical evaluation criteria for the assessment of impaired pain sensitivity by thulium-laser evoked potentials. Clin Neurophysiol 2000;111:725–735.

    Article  PubMed  CAS  Google Scholar 

  24. Leandri M, Saturno M, Spadavecchia L, Iannetti GD, Cruccu G, Truini A. Measurement of skin temperature after infrared laser stimulation. Neurophysiologie Clinique/Clin Neurophysiol 2006;36:207–218.

    Article  CAS  Google Scholar 

  25. Helmchen C, Mohr C, Roehl M, Bingel U, Lorenz J, Buchel C. Common neural systems for contact heat and laser pain stimulation reveal higher-level pain processing. Hum Brain Mapp 2007.

    Google Scholar 

  26. Apkarian AV, Bushnell MC, Treede RD, Zubieta JK. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 2005;9:463–484.

    Article  PubMed  Google Scholar 

  27. Melzack R, Casey KL. Sensory, motivational and central control determinants of pain: a new conceptual model. In: Kenshalo DR, editor. The skin senses. Springfield IL: Thomas, 1968: 423–443.

    Google Scholar 

  28. Price DD, Bush FM, Long S, Harkins SW. A comparison of pain measurement characteristics of mechanical visual analogue and simple numerical rating scales. Pain 1994;56:217–226.

    Article  PubMed  CAS  Google Scholar 

  29. Kaas JH, Nelson RJ, Sur M, Lin CS, Merzenich MM. Multiple representations of the body within the primary somatosensory cortex of primates. Science 1979;204:521–523.

    Article  PubMed  CAS  Google Scholar 

  30. Kenshalo DR, Jr., Isensee O. Responses of primate SI cortical neurons to noxious stimuli. J Neurophysiol 1983;50:1479–1496.

    PubMed  Google Scholar 

  31. Jones EG, Burton H. Areal differences in the laminar distribution of thalamic afferents in cortical fields of the insular, parietal and temporal regions of primates. J Comp Neurol 1976;168(2):197–247.

    Article  PubMed  CAS  Google Scholar 

  32. Kenshalo DR, Jr., Giesler GJ, Jr., Leonard RB, Willis WD. Responses of neurons in primate ventral posterior lateral nucleus to noxious stimuli. J Neurophysiol 1980;43(6):1594–1614.

    PubMed  Google Scholar 

  33. Jones EG, Friedman DP. Projection pattern of functional components of thalamic ventrobasal complex on monkey somatosensory cortex. J Neurophysiol 1982;48:521–544.

    PubMed  CAS  Google Scholar 

  34. Jones EG, Leavitt RY. Retrograde axonal transport and the demonstration of nonspecific projections to the cerebral cortex and striatum from thalamic intralaminar nuclei in the rat, cat and monkey. J Comp Neurol 1974;154:349–377.

    Article  PubMed  CAS  Google Scholar 

  35. Rausell E, Jones EG. Chemically distinct compartments of the thalamic VPM nucleus in monkeys relay principal and spinal trigeminal pathways to different layers of the somatosensory cortex. J Neurosci 1991;11:226–237.

    PubMed  CAS  Google Scholar 

  36. Casey KL, Minoshima S, Berger KL, Koeppe RA, Morrow TJ, Frey KA. Positron emission tomographic analysis of cerebral structures activated specifically by repetitive noxious heat stimuli. J Neurophysiol 1994;71:802–807.

    PubMed  CAS  Google Scholar 

  37. Casey KL, Minoshima S, Morrow TJ, Koeppe RA. Comparison of human cerebral activation pattern during cutaneous warmth, heat pain, and deep cold pain. J Neurophysiol 1996;76:571–581.

    PubMed  CAS  Google Scholar 

  38. Coghill RC, Talbot JD, Evans AC, Meyer E, Gjedde A, Bushnell MC et al. Distributed processing of pain and vibration by the human brain. J Neurosci 1994;14:4095–4108.

    PubMed  CAS  Google Scholar 

  39. Gelnar PA, Krauss BR, Szeverenyi NM, Apkarian AV. Fingertip representation in the human somatosensory cortex: an fMRI study. Neuroimage 1998;7:261–283.

    Article  PubMed  CAS  Google Scholar 

  40. Derbyshire SW, Jones AK. Cerebral responses to a continual tonic pain stimulus measured using positron emission tomography. Pain 1998;76:127–135.

    Article  PubMed  CAS  Google Scholar 

  41. Disbrow E, Buonocore M, Antognini J, Carstens E, Rowley HA. Somatosensory cortex: a comparison of the response to noxious thermal, mechanical, and electrical stimuli using functional magnetic resonance imaging. Hum Brain Mapp 1998;6:150–159.

    Article  PubMed  CAS  Google Scholar 

  42. Tommerdahl M, Delemos KA, Vierck CJ, Jr., Favorov OV, Whitsel BL. Anterior parietal cortical response to tactile and skin-heating stimuli applied to the same skin site. J Neurophysiol 1996;75:2662–2670.

    PubMed  CAS  Google Scholar 

  43. Yen CT, Shaw FZ. Reticular thalamic responses to nociceptive inputs in anesthetized rats. Brain Res 2003;968:179–191.

    Article  PubMed  CAS  Google Scholar 

  44. Bushnell MC, Duncan GH, Hofbauer RK, Ha B, Chen JI, Carrier B. Pain perception: is there a role for primary somatosensory cortex? Proc Natl Acad Sci U S A 1999;96:7705–7709.

    Article  PubMed  CAS  Google Scholar 

  45. Seminowicz DA, Mikulis DJ, Davis KD. Cognitive modulation of pain-related brain responses depends on behavioral strategy. Pain 2004;112:48–58.

    Article  PubMed  CAS  Google Scholar 

  46. Dunckley P, Aziz Q, Wise RG, Brooks J, Tracey I, Chang L. Attentional modulation of visceral and somatic pain. Neurogastroenterol Motil 2007;19:569–577.

    Article  PubMed  CAS  Google Scholar 

  47. Oshiro Y, Quevedo AS, McHaffie JG, Kraft RA, Coghill RC. Brain mechanisms supporting spatial discrimination of pain. J Neurosci 2007;27:3388–3394.

    Article  PubMed  CAS  Google Scholar 

  48. Tarkka IM, Treede RD. Equivalent electrical source analysis of pain-related somatosensory evoked potentials elicited by a CO2 laser. J Clin Neurophysiol 1993;10:513–519.

    Article  PubMed  CAS  Google Scholar 

  49. Andersson JL, Lilja A, Hartvig P, Langstrom B, Gordh T, Handwerker H et al. Somatotopic organization along the central sulcus, for pain localization in humans, as revealed by positron emission tomography. Exp Brain Res 1997;117:192–199.

    Article  PubMed  CAS  Google Scholar 

  50. DaSilva AF, Becerra L, Makris N, Strassman AM, Gonzalez RG, Geatrakis N et al. Somatotopic activation in the human trigeminal pain pathway. J Neurosci 2002;22:8183–8192.

    PubMed  CAS  Google Scholar 

  51. Ogino Y, Nemoto H, Goto F. Somatotopy in human primary somatosensory cortex in pain system. Anesthesiol 2005;103:821–827.

    Article  Google Scholar 

  52. Kaas JH. What, if anything, is SI? Organization of first somatosensory area of cortex. Physiol Rev 1983;63:206–231.

    PubMed  CAS  Google Scholar 

  53. Albanese MC, Duerden EG, Rainville P, Duncan GH. Memory traces of pain in human cortex. J Neurosci 2007;27:4612–4620.

    Article  PubMed  CAS  Google Scholar 

  54. Friedman DP, Murray EA. Thalamic connectivity of the second somatosensory area and neighboring somatosensory fields of the lateral sulcus of the macaque. J Comp Neurol 1986;252:348–373.

    Article  PubMed  CAS  Google Scholar 

  55. Apkarian AV, Shi T. Squirrel monkey lateral thalamus. I. Somatic nociresponsive neurons and their relation to spinothalamic terminals. J Neurosci 1994;14:6779–6795.

    PubMed  CAS  Google Scholar 

  56. Dong WK, Salonen LD, Kawakami Y, Shiwaku T, Kaukoranta EM, Martin RF. Nociceptive responses of trigeminal neurons in SII-7b cortex of awake monkeys. Brain Res 1989;484:314–324.

    Article  PubMed  CAS  Google Scholar 

  57. Dong WK, Chudler EH, Sugiyama K, Roberts VJ, Hayashi T. Somatosensory, multisensory, and task-related neurons in cortical area 7b (PF) of unanesthetized monkeys. J Neurophysiol 1994;72:542–564.

    PubMed  CAS  Google Scholar 

  58. Robinson CJ, Burton H. Somatic submodality distribution within the second somatosensory (SII), 7b, retroinsular, postauditory, and granular insular cortical areas of M. fascicularis. J Comp Neurol 1980;192:93–108.

    Article  PubMed  CAS  Google Scholar 

  59. Greenspan JD, Lee RR, Lenz FA. Pain sensitivity alterations as a function of lesion location in the parasylvian cortex. Pain 1999;81:273–282.

    Article  PubMed  CAS  Google Scholar 

  60. Ploner M, Freund HJ, Schnitzler A. Pain affect without pain sensation in a patient with a postcentral lesion. Pain 1999;81:211–214.

    Article  PubMed  CAS  Google Scholar 

  61. Kitamura Y, Kakigi R, Hoshiyama M, Koyama S, Shimojo M, Watanabe S. Pain related somatosensory evoked magnetic fields. Electroencephalogr Clin Neurophysiol 1995;95:463–474.

    Article  PubMed  CAS  Google Scholar 

  62. Valeriani M, Le Pera D, Niddam D, Arendt-Nielsen L, Chen AC. Dipolar source modeling of somatosensory evoked potentials to painful and nonpainful median nerve stimulation. Muscle Nerve 2000;23:1194–1203.

    Article  PubMed  CAS  Google Scholar 

  63. Opsommer E, Weiss T, Plaghki L, Miltner WH. Dipole analysis of ultralate (C-fibres) evoked potentials after laser stimulation of tiny cutaneous surface areas in humans. Neurosci Lett 2001;298:41–44.

    Article  PubMed  CAS  Google Scholar 

  64. Coghill RC, Sang CN, Maisog JM, Iadarola MJ. Pain intensity processing within the human brain: a bilateral, distributed mechanism. J Neurophysiol 1999;82:1934–1943.

    PubMed  CAS  Google Scholar 

  65. Maihofner C, Herzner B, Otto Handwerker H. Secondary somatosensory cortex is important for the sensory-discriminative dimension of pain: a functional MRI study. Eur J Neurosci 2006;23:1377–1383.

    Article  PubMed  Google Scholar 

  66. Gracely RH, Geisser ME, Giesecke T, Grant MAB, Petzke F, Williams DA et al. Pain catastrophizing and neural responses to pain among persons with fibromyalgia. Brain 2004;127:835–843.

    Article  PubMed  CAS  Google Scholar 

  67. Sawamoto N, Honda M, Okada T, Hanakawa T, Kanda M, Fukuyama H et al. Expectation of pain enhances responses to nonpainful somatosensory stimulation in the anterior cingulate cortex and parietal operculum/posterior insula: an event-related functional magnetic resonance imaging study. J Neurosci 2000;20:7438–7445.

    PubMed  CAS  Google Scholar 

  68. Burton H, Jones EG. The posterior thalamic region and its cortical projection in New World and Old World monkeys. J Comp Neurol 1976;168:249–301.

    Article  PubMed  CAS  Google Scholar 

  69. Friedman DP, Jones EG, Burton H. Representation pattern in the second somatic sensory area of the monkey cerebral cortex. J Comp Neurol 1980;192:21–41.

    Article  PubMed  CAS  Google Scholar 

  70. Schilder P, Stengel E. Asymbolia for pain. Arch Neurol Psychiatry 1932;25:598–600.

    Google Scholar 

  71. Berthier M, Starkstein S, Leiguarda R. Asymbolia for pain: a sensory-limbic disconnection syndrome. Ann Neurol 1988;24:41–49.

    Article  PubMed  CAS  Google Scholar 

  72. Maihofner C, Handwerker HO. Differential coding of hyperalgesia in the human brain: a functional MRI study. Neuroimage 2005;28:996–1006.

    Article  PubMed  Google Scholar 

  73. Mazzola L, Isnard J, Mauguiere F. Somatosensory and Pain Responses to Stimulation of the Second Somatosensory Area (SII) in Humans. A Comparison with SI and Insular Responses. Cerebral Cortex 2006;16:960–968.

    Article  PubMed  CAS  Google Scholar 

  74. Craig AD. New and old thoughts on the mechanisms of spinal cord injury pain. In: Yezierski RP, Burchiel KJ, editors. Spinal Cord Injury Pain: Assessment, Mechanisms, Management. Seattle: IASP Press, 2002: 237–264.

    Google Scholar 

  75. Blomqvist A, Zhang ET, Craig AD. Cytoarchitectonic and immunohistochemical characterization of a specific pain and temperature relay, the posterior portion of the ventral medial nucleus, in the human thalamus. Brain 2000;123:601–619.

    Article  PubMed  Google Scholar 

  76. Peyron R, Frot M, Schneider F, Garcia-Larrea L,Mertens P, Barral FG et al. Role of operculoinsular cortices in human pain processing: converging evidence from PET, fMRI, dipole modeling, and intracerebral recordings of evoked potentials. Neuroimage 2002;17:1336–1346.

    Article  PubMed  CAS  Google Scholar 

  77. Henderson LA, Gandevia SC, Macefield VG. Somatotopic organization of the processing of muscle and cutaneous pain in the left and right insula cortex: a single-trial fMRI study. Pain 2007;128:20–30.

    Article  PubMed  CAS  Google Scholar 

  78. Brooks JC, Zambreanu L, Godinez A, Craig AD, Tracey I. Somatotopic organisation of the human insula to painful heat studied with high resolution functional imaging. Neuroimage 2005;27:201–209.

    Article  PubMed  CAS  Google Scholar 

  79. Yasui Y, Itoh K, Kamiya H, Ino T, Mizuno N. Cingulate gyrus of the cat receives projection fibers from the thalamic region ventral to the ventral border of the ventrobasal complex. J Comp Neurol 1988;274:91–100.

    Article  PubMed  CAS  Google Scholar 

  80. Wang CC, Shyu BC. Differential projections from the mediodorsal and centrolateral thalamic nuclei to the frontal cortex in rats. Brain Res 2004;995:226–235.

    Article  PubMed  CAS  Google Scholar 

  81. Hutchison WD, Davis KD, Lozano AM, Tasker RR, Dostrovsky JO. Pain-related neurons in the human cingulate cortex. Nat Neurosci 1999;2:403–405.

    Article  PubMed  CAS  Google Scholar 

  82. Jones AKP, Qi LY, Fujirawa T, Luthra SK, Ashburner J, Bloomfield P et al. In vivo distribution of opioid receptors in man in relation to the cortical projections of the medial and lateral pain systems measured with positron emission tomography. Neurosci Lett 1991;126:25–28.

    Article  PubMed  CAS  Google Scholar 

  83. Baumgartner U, Buchholz HG, Bellosevich A, Magerl W, Siessmeier T, Höhnemann S et al High opiate receptor binding potential in the human lateral pain system: A (FEDPN)PET study. Clin Neurophysiol 2007;118:e12.

    Article  Google Scholar 

  84. Pessoa L. On the relationship between emotion and cognition. Nat Rev Neurosci 2008;9(2):148–158.

    Article  PubMed  CAS  Google Scholar 

  85. Broca P. Anatomie comparée des circonvolutions cérébrales: le grande lobe limbique. Rev Anthropol 1878;1:385–498.

    Google Scholar 

  86. Ballantine HT, Jr., Cassidy WL, Flanagan NB, Marino R, Jr. Stereotaxic anterior cingulotomy for neuropsychiatric illness and intractable pain. J Neurosurg 1967;26:488–495.

    Article  PubMed  Google Scholar 

  87. Hassenbusch SJ, Pillay PK, Barnett GH. Radiofrequency cingulotomy for intractable cancer pain using stereotaxis guided by magnetic resonance imaging. Neurosurgery 1990;27:220–223.

    Article  PubMed  CAS  Google Scholar 

  88. Pillay PK, Hassenbusch SJ. Bilateral MRI-guided stereotactic cingulotomy for intractable pain. Stereotact Funct Neurosurg 1992;59:33–38.

    Article  PubMed  CAS  Google Scholar 

  89. Foltze EL, White LE, Jr. Pain “relief” by frontal cingulumotomy. J Neurosurg 1962;19:89–100.

    Article  Google Scholar 

  90. Gybels JM, Sweet WH. Neurosurgical treatment of persistent pain. Physiological and pathological mechanisms of human pain. Pain Headache 1989;11:1–402.

    PubMed  CAS  Google Scholar 

  91. Vogt BA, Nimchinsky EA, Vogt LJ, Hof PR. Human cingulate cortex: surface features, flat maps, and cytoarchitecture. J Comp Neurol 1995;359:490–506.

    Article  PubMed  CAS  Google Scholar 

  92. Devinsky O, Morrell MJ, Vogt BA. REVIEW ARTICLE: Contributions of anterior cingulate cortex to behaviour. Brain 1995;118:279–306.

    Article  PubMed  Google Scholar 

  93. Davis KD, Taylor SJ, Crawley AP, Wood ML, Mikulis DJ. Functional MRI of pain- and attention-related activations in the human cingulate cortex. J Neurophysiol 1997;77:3370–3380.

    PubMed  CAS  Google Scholar 

  94. Rainville P, Duncan GH, Price DD, Carrier B, Bushnell MC. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 1997;277:968–971.

    Article  PubMed  CAS  Google Scholar 

  95. Arienzo D, Babiloni C, Ferretti A, Caulo M, Del Gratta C, Tartaro A et al. Somatotopy of anterior cingulate cortex (ACC) and supplementary motor area (SMA) for electric stimulation of the median and tibial nerves: an fMRI study. Neuroimage 2006;33:700–705.

    Article  PubMed  CAS  Google Scholar 

  96. Talbot JD, Villemure JG, Bushnell MC, Duncan GH. Evaluation of pain perception after anterior capsulotomy: a case report. Somatosens Mot Res 1995;12:115–126.

    Article  PubMed  CAS  Google Scholar 

  97. Casey KL. Forebrain mechanisms of nociception and pain: Analysis through imaging. PNAS 1999;96:7668–7674.

    Article  PubMed  CAS  Google Scholar 

  98. Wager TD, Rilling JK, Smith EE, Sokolik A, Casey KL, Davidson RJ et al. Placebo-induced changes in FMRI in the anticipation and experience of pain. Science 2004;303:1162–1167.

    Article  PubMed  CAS  Google Scholar 

  99. McDonald AJ. Cortical pathways to the mammalian amygdala. Prog Neurobiol 1998;55:257–332.

    Article  PubMed  CAS  Google Scholar 

  100. Zald DH. The human amygdala and the emotional evaluation of sensory stimuli. Brain Res Rev 2003;41:88–123.

    Article  PubMed  Google Scholar 

  101. Schneider F, Habel U, Holthusen H, Kessler C, Posse S, Muller-Gartner HW et al. Subjective ratings of pain correlate with subcortical-limbic blood flow: an fMRI study. Neuropsychobiology 2001;43:175–185.

    Article  PubMed  CAS  Google Scholar 

  102. Bornhovd K, Quante M, Glauche V, Bromm B, Weiller C, Buchel C. Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal, insula and somatosensory cortex: a single-trial fMRI study. Brain 2002;125:1326–1336.

    Article  PubMed  CAS  Google Scholar 

  103. Mason P. Deconstructing endogenous pain modulations. J Neurophysiol 2005;94:1659–1663.

    Article  PubMed  CAS  Google Scholar 

  104. Fields HL. Pain modulation: expectation, opioid analgesia and virtual pain. Prog Brain Res 2000;122:245–253.

    Article  PubMed  CAS  Google Scholar 

  105. Dunckley P, Wise RG, Fairhurst M, Hobden P, Aziz Q, Chang L et al. A comparison of visceral and somatic pain processing in the human brainstem using functional magnetic resonance imaging. J Neurosci 2005;25:7333–7341.

    Article  PubMed  CAS  Google Scholar 

  106. Tracey I, Iannetti GD. Brainstem functional imaging in humans. Suppl Clin Neurophysiol 2006;58:52–67.

    Article  PubMed  Google Scholar 

  107. Guimaraes AR, Melcher JR, Talavage TM, Baker JR, Ledden P, Rosen BR et al. Imaging subcortical auditory activity in humans. Hum Brain Mapp 1998;6:33–41.

    Article  PubMed  CAS  Google Scholar 

  108. Farina S, Tinazzi M, Le Pera D, Valeriani M. Pain-related modulation of the human motor cortex. Neurol Res 2003;25:130–142.

    Article  PubMed  Google Scholar 

  109. Chudler EH, Dong WK. The role of the basal ganglia in nociception and pain. Pain 1995;60:3–38.

    Article  PubMed  CAS  Google Scholar 

  110. Bingel U, Glascher J, Weiller C, Buchel C. Somatotopic representation of nociceptive information in the putamen: an event-related fMRI study. Cereb Cortex 2004;14: 1340–1345.

    Article  PubMed  CAS  Google Scholar 

  111. Logothetis NK, Pfeuffer J. On the nature of the BOLD fMRI contrast mechanism. Magn Reson Imaging 2004;22:1517–1531.

    Article  PubMed  Google Scholar 

  112. Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 1992;89:5675–5679.

    Article  PubMed  CAS  Google Scholar 

  113. Chen JI, Ha B, Bushnell MC, Pike B, Duncan GH. Differentiating noxious- and innocuous-related activation of human somatosensory cortices using temporal analysis of fMRI. J Neurophysiol 2002;88:464–474.

    Article  PubMed  Google Scholar 

  114. Iramina K, Iramina K, Kamei H, Uchida S, Kato T, Ugurbil K et al. Effects of stimulus intensity on fMRI and MEG in somatosensory cortex using electrical stimulation. IEEE Trans Magn 1999;35:4106–4108.

    Article  Google Scholar 

  115. Brooks J, Tracey I. From nociception to pain perception: imaging the spinal and supraspinal pathways. J Anat 2005;207:19–33.

    Article  PubMed  Google Scholar 

  116. Brooks JC, Beckmann CF, Miller KL, Wise RG, Porro CA, Tracey I et al. Physiological noise modelling for spinal functional magnetic resonance imaging studies. Neuroimage 2008;39:680–692.

    Article  PubMed  Google Scholar 

  117. Mackey S, Lucca A, Soneji D, Kaplan K, Glover G. FMRI evidence of noxious thermal stimuli encoding in the human spinal cord. J Pain 2006;7(4, Suppl 1):S25.

    Google Scholar 

  118. Rollnik JD, Schmitz N, Kugler J. Anxiety moderates cardiovascular responses to painful stimuli during sphygmomanometry. Int J Psychophysiol 1999;33:253–257.

    Article  PubMed  CAS  Google Scholar 

  119. Becerra LR, Breiter HC, Stojanovic M, Fishman S, Edwards A, Comite AR et al. Human brain activation under controlled thermal stimulation and habituation to noxious heat: an fMRI study. Magn Reson Med 1999;41:1044–1057.

    Article  PubMed  CAS  Google Scholar 

  120. Rainville P, Doucet JC, Fortin MC, Duncan GH. Rapid deterioration of pain sensory-discriminative information in short-term memory. Pain 2004;110:605–615.

    Article  PubMed  Google Scholar 

  121. Charron J, Rainville P, Marchand S. Direct comparison of placebo effects on clinical and experimental pain. Clin J Pain 2006;22:204–211.

    Article  PubMed  Google Scholar 

  122. Price DD, Milling LS, Kirsch I, Duff A, Montgomery GH, Nicholls SS. An analysis of factors that contribute to the magnitude of placebo analgesia in an experimental paradigm. Pain 1999;83:147–156.

    Article  PubMed  CAS  Google Scholar 

  123. Apkarian AV, Darbar A, Krauss BR, Gelnar PA, Szeverenyi NM. Differentiating cortical areas related to pain perception from stimulus identification: temporal analysis of fMRI activity. J Neurophysiol 1999;81:2956–2963.

    PubMed  CAS  Google Scholar 

  124. Porro CA, Lui F, Facchin P, Maieron M, Baraldi P. Percept-related activity in the human somatosensory system: functional magnetic resonance imaging studies. Magn Reson Imaging 2004;22:1539–1548.

    Article  PubMed  Google Scholar 

  125. Andrew D, Greenspan JD. Peripheral coding of tonic mechanical cutaneous pain: comparison of nociceptor activity in rat and human psychophysics. J Neurophysiol 1999;82:2641–2648.

    PubMed  CAS  Google Scholar 

  126. Adriaensen H, Gybels J, Handwerker HO, Van Hees J. Nociceptor discharges and sensations due to prolonged noxious mechanical stimulation – a paradox. Hum Neurobiol 1984;3:53–58.

    PubMed  CAS  Google Scholar 

  127. Gallez A, Albanese MC, Rainville P, Duncan GH. Attenuation of sensory and affective responses to heat pain: evidence for contralateral mechanisms 1. J Neurophysiol 2005;94:3509–3515.

    Article  PubMed  Google Scholar 

  128. Bingel U, Schoell E, Herken W, Buchel C, May A. Habituation to painful stimulation involves the antinociceptive system. Pain 2007;131:21–30.

    Article  PubMed  CAS  Google Scholar 

  129. Valeriani M, de Tommaso M, Restuccia D, Le Pera D, Guido M, Iannetti GD et al. Reduced habituation to experimental pain in migraine patients: a CO(2) laser evoked potential study. Pain 2003;105:57–64.

    Article  PubMed  CAS  Google Scholar 

  130. Schoedel AL, Zimmermann K, Handwerker HO, Forster C. The influence of simultaneous ratings on cortical BOLD effects during painful and non-painful stimulation. Pain 2008;135:131–141.

    Article  PubMed  Google Scholar 

  131. Buchel C, Bornhovd K, Quante M, Glauche V, Bromm B, Weiller C. Dissociable neural responses related to pain intensity, stimulus intensity, and stimulus awareness within the anterior cingulate cortex: a parametric single-trial laser functional magnetic resonance imaging study. J Neurosci 2002;22:970–976.

    PubMed  CAS  Google Scholar 

  132. Friston KJ, Penny WD, Glaser DE. Conjunction revisited. Neuroimage 2005;25:661–667.

    Article  PubMed  Google Scholar 

  133. Fairhurst M, Wiech K, Dunckley P, Tracey I. Anticipatory brainstem activity predicts neural processing of pain in humans. Pain 2007;128:101–110.

    Article  PubMed  Google Scholar 

  134. Bingel U, Rose M, Glascher J, Buchel C. fMRI reveals how pain modulates visual object processing in the ventral visual stream. Neuron 2007;55:157–167.

    Article  PubMed  CAS  Google Scholar 

  135. Rose M, Schmid C, Winzen A, Sommer T, Buchel C. The functional and temporal characteristics of top-down modulation in visual selection. Cerebral Cortex 2005;15:1290–1298.

    Article  PubMed  Google Scholar 

  136. Friston KJ. Functional and effective connectivity in neuroimaging: A synthesis. Hum Brain Mapp 1994;2:56–78.

    Article  Google Scholar 

  137. Valet M, Sprenger T, Boecker H, Willoch F, Rummeny E, Conrad B et al. Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain – an fMRI analysis. Pain 2004;109:399–408.

    Article  PubMed  Google Scholar 

  138. Friston KJ, Buechel C, Fink GR, Morris J, Rolls E, Dolan RJ. Psychophysiological and modulatory interactions in neuroimaging. Neuroimage 1997;6:218–229.

    Article  PubMed  CAS  Google Scholar 

  139. McIntosh AR, Bookstein FL, Haxby JV, Grady CL. Spatial pattern analysis of functional brain images using partial least squares. Neuroimage 1996;3:143–157.

    Article  PubMed  CAS  Google Scholar 

  140. Seminowicz DA, Davis KD. Pain enhances functional connectivity of a brain network evoked by performance of a cognitive task. J Neurophysiol 2007;97:3651–3659.

    Article  PubMed  Google Scholar 

  141. Glass JM. Cognitive dysfunction in fibromyalgia and chronic fatigue syndrome: new trends and future directions. Curr Rheumatol Rep 2006;8:425–429.

    Article  PubMed  Google Scholar 

  142. Sjogren P, Christrup LL, Petersen MA, Hojsted J. Neuropsychological assessment of chronic non-malignant pain patients treated in a multidisciplinary pain centre. Eur J Pain 2005;9:453–462.

    Article  PubMed  Google Scholar 

  143. Ramnani N, Behrens TE, Penny W, Matthews PM. New approaches for exploring anatomical and functional connectivity in the human brain. Biol Psychiatry 2004;56:613–619.

    Article  PubMed  Google Scholar 

  144. Friston KJ, Frith CD, Frackowiak RSJ. Time-dependent changes in effective connectivity measured with PET. Hum Brain Mapp 1993;1:69–80.

    Article  Google Scholar 

  145. Hadjipavlou G, Dunckley P, Behrens TE, Tracey I. Determining anatomical connectivities between cortical and brainstem pain processing regions in humans: a diffusion tensor imaging study in healthy controls. Pain 2006;123:169–178.

    Article  PubMed  Google Scholar 

  146. Peyron R, Garcia-Larrea L, Gregoire MC, Costes N, Convers P, Lavenne F et al. Haemodynamic brain responses to acute pain in humans: sensory and attentional networks. Brain 1999;122:1765–1780.

    Article  PubMed  Google Scholar 

  147. Bantick SJ, Wise RG, Ploghaus A, Clare S, Smith SM, Tracey I. Imaging how attention modulates pain in humans using functional MRI. Brain 2002;125:310–319.

    Article  PubMed  Google Scholar 

  148. Tracey I, Ploghaus A, Gati JS, Clare S, Smith S, Menon RS et al. Imaging attentional modulation of pain in the periaqueductal gray in humans. J Neurosci 2002;22:2748–2752.

    PubMed  CAS  Google Scholar 

  149. Levine JD, Gordon NC, Jones RT, Fields HL. The narcotic antagonist naloxone enhances clinical pain. Nature 1978;272:826–827.

    Article  PubMed  CAS  Google Scholar 

  150. Hohmann AG, Suplita RL. Endocannabinoid mechanisms of pain modulation. AAPS J 2006;8:E693–E708.

    Article  PubMed  CAS  Google Scholar 

  151. Buffington AL, Hanlon CA, McKeown MJ. Acute and persistent pain modulation of attention-related anterior cingulate fMRI activations. Pain 2005;113:172–184.

    Article  PubMed  Google Scholar 

  152. Roder CH, Michal M, Overbeck G, van dV V, Linden DE. Pain response in depersonalization: a functional imaging study using hypnosis in healthy subjects. Psychother Psychosom 2007;76:115–121.

    Article  PubMed  Google Scholar 

  153. Raij TT, Numminen J, Narvanen S, Hiltunen J, Hari R. Brain correlates of subjective reality of physically and psychologically induced pain. Proc Natl Acad Sci U S A 2005;102:2147–2151.

    Article  PubMed  CAS  Google Scholar 

  154. Schulz-Stubner S, Krings T, Meister IG, Rex S, Thron A, Rossaint R. Clinical hypnosis modulates functional magnetic resonance imaging signal intensities and pain perception in a thermal stimulation paradigm. Reg Anesth Pain Med 2004;29:549–556.

    Article  PubMed  Google Scholar 

  155. Bingel U, Lorenz J, Schoell E, Weiller C, Buchel C. Mechanisms of placebo analgesia: rACC recruitment of a subcortical antinociceptive network. Pain 2006;120:8–15.

    Article  PubMed  CAS  Google Scholar 

  156. Maihofner C, Ringler R, Herrndobler F, Koppert W. Brain imaging of analgesic and antihyperalgesic effects of cyclooxygenase inhibition in an experimental human pain model: a functional MRI study. Eur J Neurosci 2007;26:1344–1356.

    Article  PubMed  Google Scholar 

  157. Wise RG, Lujan BJ, Schweinhardt P, Peskett GD, Rogers R, Tracey I. The anxiolytic effects of midazolam during anticipation to pain revealed using fMRI. Magn Reson Imaging 2007;25:801–810.

    Article  PubMed  CAS  Google Scholar 

  158. Nemoto H, Nemoto Y, Toda H, Mikuni M, Fukuyama H. Placebo analgesia: a PET study. Exp Brain Res 2007;179:655–664.

    Article  PubMed  Google Scholar 

  159. Petrovic P, Kalso E, Petersson KM, Ingvar M. Placebo and opioid analgesia - imaging a shared neuronal network. Science 2002;295:1737–1740.

    Article  PubMed  CAS  Google Scholar 

  160. Menon RS, Goodyear BG. Spatial and Temporal Resolution in fMRI. Functional Magnetic Resonance Imaging: An Introduction to Methods. Oxford: Oxford University Press, 2001:149–158.

    Google Scholar 

  161. Fields HL, Heinricher MM. Anatomy and physiology of a nociceptive modulatory system. Philos Trans R Soc Lond B Biol Sci 1985;308:361–374.

    Article  PubMed  CAS  Google Scholar 

  162. Porro CA. Functional imaging and pain: behavior, perception, and modulation. Neuroscientist 2003;9:354–369.

    Article  PubMed  Google Scholar 

  163. Davis KD, Kwan CL, Crawley AP, Mikulis DJ. Event-related fMRI of pain: entering a new era in imaging pain. Neuroreport 1998;9:3019–3023.

    Article  PubMed  CAS  Google Scholar 

  164. Zubieta JK, Smith YR, Bueller JA, Xu Y, Kilbourn MR, Jewett DM et al. Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science 2001;293:311–315.

    Article  PubMed  CAS  Google Scholar 

  165. Thompson E. Empathy and consciousness. J Consc Stud 2001;8:1–32.

    Google Scholar 

  166. Jackson PL, Brunet E, Meltzoff AN, Decety J. Empathy examined through the neural mechanisms involved in imagining how I feel versus how you feel pain. Neuropsychologia 2006;44:752–761.

    Article  PubMed  Google Scholar 

  167. Jackson PL, Meltzoff AN, Decety J. How do we perceive the pain of others? A window into the neural processes involved in empathy. Neuroimage 2005;24:771–779.

    Article  PubMed  Google Scholar 

  168. Lamm C, Nusbaum HC, Meltzoff AN, Decety J. What are you feeling? Using functional magnetic resonance imaging to assess the modulation of sensory and affective responses during empathy for pain. PLoS ONE 2007;2:e1292.

    Article  PubMed  Google Scholar 

  169. Moriguchi Y, Decety J, Ohnishi T, Maeda M, Mori T, Nemoto K et al. Empathy and judging other’s pain: an fMRI study of alexithymia. Cereb Cortex 2007;17:2223–2234.

    Article  PubMed  Google Scholar 

  170. Morrison I, Lloyd D, di Pellegrino G, Roberts N. Vicarious responses to pain in anterior cingulate cortex: is empathy a multisensory issue? Cogn Affect Behav Neurosci 2004;4:270–278.

    Article  PubMed  Google Scholar 

  171. Morrison I, Peelen MV, Downing PE. The sight of others’ pain modulates motor processing in human cingulate cortex. Cereb Cortex 2007;17:2214–2222.

    Article  PubMed  Google Scholar 

  172. Simon D, Craig KD, Miltner WH, Rainville P. Brain responses to dynamic facial expressions of pain. Pain 2006;126:309–318.

    Article  PubMed  Google Scholar 

  173. Chen JI, Simon D, Duncan GH, Rainville P. Brain responses to facial expression of pain and negative emotions. Society for Neuroscience, Washington DC. 2005.

    Google Scholar 

  174. Botvinick M, Jha AP, Bylsma LM, Fabian SA, Solomon PE, Prkachin KM. Viewing facial expressions of pain engages cortical areas involved in the direct experience of pain. Neuroimage 2005;25:312–319.

    Article  PubMed  Google Scholar 

  175. Saarela MV, Hlushchuk Y, Williams AC, Schurmann M, Kalso E, Hari R. The compassionate brain: humans detect intensity of pain from another’s face. Cereb Cortex 2007;17:230–237.

    Article  PubMed  Google Scholar 

  176. Singer T, Seymour B, O’Doherty J, Kaube H, Dolan RJ, Frith CD. Empathy for pain involves the affective but not sensory components of pain. Science 2004;303:1157–1162.

    Article  PubMed  CAS  Google Scholar 

  177. Jackson PL, Rainville P, Decety J. To what extent do we share the pain of others? Insight from the neural bases of pain empathy. Pain 2006;125:5–9.

    Article  PubMed  Google Scholar 

  178. Avenanti A, Bueti D, Galati G, Aglioti SM. Transcranial magnetic stimulation highlights the sensorimotor side of empathy for pain. Nat Neurosci 2005;8:955–960.

    PubMed  CAS  Google Scholar 

  179. Avenanti A, Paluello IM, Bufalari I, Aglioti SM. Stimulus-driven modulation of motor-evoked potentials during observation of others’ pain. Neuroimage 2006;32:316–324.

    Article  PubMed  Google Scholar 

  180. Morrison I, Lloyd D, di Pellegrino G, Roberts N. Vicarious responses to pain in anterior cingulate cortex: is empathy a multisensory issue? Cogn Affect Behav Neurosci 2004;4:270–278.

    Article  PubMed  Google Scholar 

  181. Singer T, Frith C. The painful side of empathy. Nat Neurosci 2005;8:845–846.

    Article  PubMed  CAS  Google Scholar 

  182. Norris DG. High field human imaging. J Magn Reson Imaging 2003;18:519–529.

    Article  PubMed  Google Scholar 

  183. Kim SG. Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 1995;34:293–301.

    Article  PubMed  CAS  Google Scholar 

  184. Fox PT, Raichle ME, Mintun MA, Dence C. Nonoxidative glucose consumption during focal physiologic neural activity. Science 1988;241:462.

    Article  PubMed  CAS  Google Scholar 

  185. Ye FQ, Smith AM, Yang Y, Duyn J, Mattay VS, Ruttimann UE et al. Quantitation of regional cerebral blood flow increases during motor activation: a steady-state arterial spin tagging study. Neuroimage 1997;6:104–112.

    Article  PubMed  CAS  Google Scholar 

  186. Ramsey NF, Kirkby BS, van Gelderen P, Berman KF, Duyn JH, Frank JA et al. Functional mapping of human sensorimotor cortex with 3D BOLD fMRI correlates highly with H2(15)O PET rCBF. J Cereb Blood Flow Metab 1996;16:755–764.

    Article  PubMed  CAS  Google Scholar 

  187. Detre JA, Leigh JS, Williams DS, Koretsky AP. Perfusion imaging. Magn Reson Med 1992;23:37–45.

    Article  PubMed  CAS  Google Scholar 

  188. Owen DG, Bureau Y, Thomas AW, Prato FS, St Lawrence KS. Quantification of pain-induced changes in cerebral blood flow by perfusion MRI. Pain 2008;136(1–2):85–96.

    Article  PubMed  CAS  Google Scholar 

  189. Wang J, Li L, Roc AC, Alsop DC, Tang K, Butler NS et al. Reduced susceptibility effects in perfusion fMRI with single-shot spin-echo EPI acquisitions at 1.5 Tesla. Magn Reson Imaging 2004;22:1–7.

    Article  PubMed  Google Scholar 

  190. Devlin JT, Russell RP, Davis MH, Price CJ, Wilson J, Moss HE et al. Susceptibility-induced loss of signal: comparing PET and fMRI on a semantic task. Neuroimage 2000;11:589–600.

    Article  PubMed  CAS  Google Scholar 

  191. Merboldt KD, Fransson P, Bruhn H, Frahm J. Functional MRI of the human amygdala? Neuroimage 2001;14:253–257.

    Article  PubMed  CAS  Google Scholar 

  192. Ojemann JG, Akbudak E, Snyder AZ, McKinstry RC, Raichle ME, Conturo TE. Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts. Neuroimage 1997;6:156–167.

    Article  PubMed  CAS  Google Scholar 

  193. Paus T, Koski L, Caramanos Z, Westbury C. Regional differences in the effects of task difficulty and motor output on blood flow response in the human anterior cingulate cortex: a review of 107 PET activation studies. Neuroreport 1998;9:R37–R47.

    Article  PubMed  CAS  Google Scholar 

  194. Wager TD, Jonides J, Reading S. Neuroimaging studies of shifting attention: a meta-analysis. Neuroimage 2004;22:1679–1693.

    Article  PubMed  Google Scholar 

  195. Turkeltaub PE, Eden GF, Jones KM, Zeffiro TA. Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage 2002;16:765–780.

    Article  PubMed  Google Scholar 

  196. Laird AR, Fox PM, Price CJ, Glahn DC, Uecker AM, Lancaster JL et al. ALE meta-analysis: controlling the false discovery rate and performing statistical contrasts. Hum Brain Mapp 2005;25:155–164.

    Article  PubMed  Google Scholar 

  197. Ashburner J, Friston KJ. Voxel-based morphometry – the methods. Neuroimage 2000;11:805–821.

    Article  PubMed  CAS  Google Scholar 

  198. Lerch JP, Evans AC. Cortical thickness analysis examined through power analysis and a population simulation. Neuroimage 2005;24:163–173.

    Article  PubMed  Google Scholar 

  199. Baron JC, Chételat G, Desgranges B, Perchey G, Landeau B, de la Sayette V et al. In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer’s disease. Neuroimage 2001;14:298–309.

    Article  PubMed  CAS  Google Scholar 

  200. Thieben MJ, Duggins AJ, Good CD, Gomes L, Mahant N, Richards F et al. The distribution of structural neuropathology in pre-clinical Huntington’s disease. Brain 2002;125:1815–1828.

    Article  PubMed  CAS  Google Scholar 

  201. Singh V, Chertkow H, Lerch JP, Evans AC, Dorr AE, Kabani NJ. Spatial patterns of cortical thinning in mild cognitive impairment and Alzheimer’s disease. Brain 2006;129:2885–2893.

    Article  PubMed  Google Scholar 

  202. Apkarian AV, Sosa Y, Sonty S, Levy RM, Harden RN, Parrish TB et al. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci 2004;24:10410–10415.

    Article  PubMed  CAS  Google Scholar 

  203. Davis KD, Pope G, Chen J, Kwan CL, Crawley AP, Diamant NE. Cortical thinning in IBS: implications for homeostatic, attention, and pain processing. Neurology 2008;70:153–154.

    Article  PubMed  CAS  Google Scholar 

  204. Schmidt-Wilcke T, Leinisch E, Gänssbauer S, Draganski B, Bogdahn U, Altmeppen J et al. Affective components and intensity of pain correlate with structural differences in gray matter in chronic back pain patients. Pain 2006;125:89–97.

    Article  PubMed  CAS  Google Scholar 

  205. Draganski B, Moser T, Lummel N, Gänssbauer S, Bogdahn U, Haas F et al. Decrease of thalamic gray matter following limb amputation. Neuroimage 2006;31:951–957.

    Article  PubMed  CAS  Google Scholar 

  206. Kwan CL, Diamant NE, Pope G, Mikula K, Mikulis DJ, Davis KD. Abnormal forebrain activity in functional bowel disorder patients with chronic pain. Neurology 2005;65:1268–1277.

    Article  PubMed  CAS  Google Scholar 

  207. Vernon DJ. Can neurofeedback training enhance performance? An evaluation of the evidence with implications for future research. Appl Psychophysiol Biofeedback 2005;30:347–364.

    Article  PubMed  Google Scholar 

  208. Tao JX, Ray A, Hawes-Ebersole S, Ebersole JS. Intracranial EEG substrates of scalp EEG interictal spikes. Epilepsia 2005;46:669–676.

    Article  PubMed  Google Scholar 

  209. Stern JM. Simultaneous electroencephalography and functional magnetic resonance imaging applied to epilepsy. Epilepsy Behav 2006;8:683–692.

    Article  PubMed  Google Scholar 

  210. Lantz G, Spinelli L, Menendez RG, Seeck M, Michel CM. Localization of distributed sources and comparison with functional MRI. Epileptic Disord 2001;Special Issue:45–58.

    PubMed  CAS  Google Scholar 

  211. Cox RW, Jesmanowicz A, Hyde JS. Real-time functional magnetic resonance imaging. Magn Reson Med 1995;33:230–236.

    Article  PubMed  CAS  Google Scholar 

  212. Yoo SS, Jolesz FA. Functional MRI for neurofeedback: feasibility study on a hand motor task. Neuroreport 2002;13:1377–1381.

    Article  PubMed  Google Scholar 

  213. Yoo SS, O’Leary HM, Fairneny T, Chen NK, Panych LP, Park H et al. Increasing cortical activity in auditory areas through neurofeedback functional magnetic resonance imaging. Neuroreport 2006;17:1273–1278.

    Article  PubMed  Google Scholar 

  214. Weiskopf N, Veit R, Erb M, Mathiak K, Grodd W, Goebel R et al. Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data. Neuroimage 2003;19:577–586.

    Article  PubMed  Google Scholar 

  215. Weiskopf N, Scharnowski F, Veit R, Goebel R, Birbaumer N, Mathiak K. Self regulation of local brain activity using real-time functional magnetic resonance imaging (fMRI). J Physiol Paris 2004;98:357–373.

    Article  PubMed  Google Scholar 

  216. Posse S, Fitzgerald D, Gao K, Habel U, Rosenberg D, Moore GJ et al. Real-time fMRI of temporolimbic regions detects amygdala activation during single-trial self-induced sadness. Neuroimage 2003;18:760–768.

    Article  PubMed  Google Scholar 

  217. Flor H, Braun C, Elbert T, Birbaumer N. Extensive reorganization of primary somatosensory cortex in chronic back pain patients. Neurosci Lett 1997;224:5–8.

    Article  PubMed  CAS  Google Scholar 

  218. Diers M, Koeppe C, Diesch E, Stolle AM, Holzl R, Schiltenwolf M et al. Central processing of acute muscle pain in chronic low back pain patients: an EEG mapping study. J Clin Neurophysiol 2007;24:76–83.

    Article  PubMed  Google Scholar 

  219. Apkarian AV, Thomas PS, Krauss BR, Szeverenyi NM. Prefrontal cortical hyperactivity in patients with sympathetically mediated chronic pain. Neurosci Lett 2001;311:193–197.

    Article  PubMed  CAS  Google Scholar 

  220. Collins DL, Neelin P, Peters TM, Evans AC. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 1994;18:192–205.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary H. Duncan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Duerden, E.G., Duncan, G.H. (2009). fMRI of Pain. In: Filippi, M. (eds) fMRI Techniques and Protocols. Neuromethods, vol 41. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-919-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-919-2_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-918-5

  • Online ISBN: 978-1-60327-919-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics