The Nuclear Receptor Superfamily pp 69-96

Part of the Methods in Molecular Biology™ book series (MIMB, volume 505) | Cite as

FRAP and FRET Methods to Study Nuclear Receptors in Living Cells

  • Martin E. van Royen
  • Christoffel Dinant
  • Pascal Farla
  • Jan Trapman
  • Adriaan B. Houtsmuller


Quantitative imaging techniques of fluorescently-tagged proteins have been instrumental in the study of the behavior of nuclear receptors (NRs) and coregulators in living cells. Ligand-activated NRs exert their function in transcription regulation by binding to specific response elements in promotor and enhancer sequences of genes. Fluorescence recovery after photobleaching (FRAP) has proven to be a powerful tool to study the mobility of fluorescently-labeled molecules in living cells. Since binding to DNA leads to the immobilization of DNA-interacting proteins like NRs, FRAP is especially useful for determining DNA-binding kinetics of these proteins. The coordinated interaction of NRs with promoters/enhancers and subsequent transcription activation is not only regulated by ligand but also by interactions with sets of cofactors and, at least in the case of the androgen receptor (AR), by dimerization and interdomain interactions. In living cells, these interactions can be studied by fluorescence resonance energy transfer (FRET).

Here we provide and discuss detailed protocols for FRAP and FRET procedures to study the behavior of nuclear receptors in living cells. On the basis of our studies of the AR, we provide protocols for two different FRAP methods (strip-FRAP and FLIP-FRAP) to quantitatively investigate DNA-interactions and for two different FRET approaches, ratio imaging, and acceptor photobleaching FRET to study AR domain interactions and interactions with cofactor motifs. Finally, we provide a protocol of a technique where FRAP and acceptor photobleaching FRET are combined to study the dynamics of interacting ARs.

Key words

Androgen Receptor N/C-interaction Confocal Microscopy FRET FRAP 


  1. 1.
    Germain, P., Staels, B., Dacquet, C., Spedding, M., and Laudet, V. (2006) Overview of nomenclature of nuclear receptors. Pharmacol. Rev. 58, 685–704.CrossRefPubMedGoogle Scholar
  2. 2.
    Trapman, J., and Cleutjens, K. B. (1997) Androgen-regulated gene expression in prostate cancer. Semin. Cancer Biol. 8, 29–36.CrossRefPubMedGoogle Scholar
  3. 3.
    Brinkmann, A. O., Faber, P. W., van Rooij, H. C. J., Kuiper, G. G. J. M., Ris, C., Klaassen, P., van der Korput, J. A. G. M., Voorhorst, M. M., van Laar, J. H., Mulder, E., and Trapman, J. (1989) The human androgen receptor: domain structure, genomic organization and regulation of expression. J. Steroid Biochem. 34, 307–10.CrossRefPubMedGoogle Scholar
  4. 4.
    Claessens, F., Verrijdt, G., Schoenmakers, E., Haelens, A., Peeters, B., Verhoeven, G., and Rombauts, W. (2001) Selective DNA binding by the androgen receptor as a mechanism for hormone-specific gene regulation. J. Steroid Biochem. Mol. Biol. 76, 23–30.CrossRefPubMedGoogle Scholar
  5. 5.
    Cleutjens, K. B. J. M., van der Korput, J. A. G. M., van Eekelen, C. C. E. M., van Rooij, H. C. J., Faber, P. W., and Trapman, J. (1997) An androgen response element in a far upstream enhancer region is essential for high, androgen-regulated activity of the prostate-specific antigen promoter. Mol. Endocrinol. 11, 148–61.CrossRefPubMedGoogle Scholar
  6. 6.
    Tyagi, R. K., Lavrovsky, Y., Ahn, S. C., Song, C. S., Chatterjee, B., and Roy, A. K. (2000) Dynamics of intracellular movement and nucleocytoplasmic recycling of the ligand-activated androgen receptor in living cells. Mol. Endocrinol. 14, 1162–74.CrossRefPubMedGoogle Scholar
  7. 7.
    Georget, V., Lobaccaro, J. M., Terouanne, B., Mangeat, P., Nicolas, J.C., and Sultan, C. (1997) Trafficking of the androgen receptor in living cells with fused green fluorescent protein-androgen receptor. Mol. Cell. Endocrinol. 129, 17–26.CrossRefPubMedGoogle Scholar
  8. 8.
    Rayasam, G. V., Elbi, C., Walker, D. A., Wolford, R., Fletcher, T. M., Edwards, D. P., and Hager, G. L. (2005) Ligand-specific dynamics of the progesterone receptor in living cells and during chromatin remodeling in vitro. Mol. Cell. Biol. 25, 2406–18.CrossRefPubMedGoogle Scholar
  9. 9.
    Farla, P., Hersmus, R., Trapman, J., and Houtsmuller, A. B. (2005) Antiandrogens prevent stable DNA-binding of the androgen receptor. J. Cell Sci. 118, 4187–98.CrossRefPubMedGoogle Scholar
  10. 10.
    Agresti, A., Scaffidi, P., Riva, A., Caiolfa, V. R., and Bianchi, M. E. (2005) GR and HMGB1 interact only within chromatin and influence each other's residence time. Mol. Cell 18, 109–21.CrossRefPubMedGoogle Scholar
  11. 11.
    Farla, P., Hersmus, R., Geverts, B., Mari, P. O., Nigg, A. L., Dubbink, H. J., Trapman, J., and Houtsmuller, A. B. (2004) The androgen receptor ligand-binding domain stabilizes DNA binding in living cells. J. Struct. Biol. 147, 50–61.CrossRefPubMedGoogle Scholar
  12. 12.
    Schaaf, M. J., and Cidlowski, J. A. (2003) Molecular determinants of glucocorticoid receptor mobility in living cells: the importance of ligand affinity. Mol. Cell. Biol. 23, 1922–34.CrossRefPubMedGoogle Scholar
  13. 13.
    Stenoien, D. L., Patel, K., Mancini, M. G., Dutertre, M., Smith, C. L., O'Malley, B. W., and Mancini, M. A. (2001) FRAP reveals that mobility of oestrogen receptor-alpha is ligand- and proteasome-dependent. Nat. Cell Biol. 3, 15–23.CrossRefPubMedGoogle Scholar
  14. 14.
    McNally, J. G., Müller, W. G., Walker, D., Wolford, R., and Hager, G. L. (2000) The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science 287, 1262–65.CrossRefPubMedGoogle Scholar
  15. 15.
    Houtsmuller, A. B., and Vermeulen, W. (2001) Macromolecular dynamics in living cell nuclei revealed by fluorescence redistribution after photobleaching. Histochem. Cell Biol. 115, 13–21.PubMedGoogle Scholar
  16. 16.
    Houtsmuller, A. B., Rademakers, S., Nigg, A. L., Hoogstraten, D., Hoeijmakers, J. H. J., and Vermeulen, W. (1999) Action of DNA repair endonuclease ERCC1/XPF in living cells. Science 284, 958–61.CrossRefPubMedGoogle Scholar
  17. 17.
    Houtsmuller, A. B. (2005) Fluorescence recovery after photobleaching: application to nuclear proteins. in “Advances in Biochemical Engineering/Biotechnology” (Rietdorf, J., ed.), Vol. 95, Springer-Verlag GmbH, Berlin, pp. 177–99.Google Scholar
  18. 18.
    Van Royen, M. E., Farla, P., Mattern, K. A., Geverts, B., Trapman, J., and Houtsmuller, A. B. (2008) FRAP to study nuclear protein dynamics in living cells. in “The Nucleus, Volume 2: Physical Properties and Imaging Methods” (Hancock, R., ed.), Vol. 464, Humana Press, pp. 363–84Google Scholar
  19. 19.
    Bruggenwirth, H. T., Boehmer, A. L. M., Lobaccaro, J. M., Chiche, L., Sultan, C., Trapman, J., and Brinkmann, A. O. (1998) Substitution of Ala564 in the first zinc cluster of the deoxyribonucleic acid (DNA)-binding domain of the androgen receptor by Asp, Asn, or Leu exerts differential effects on DNA binding. Endocrinology 139, 103–10.CrossRefPubMedGoogle Scholar
  20. 20.
    Elbi, C., Walker, D. A., Romero, G., Sullivan, W. P., Toft, D. O., Hager, G. L., and DeFranco, D. B. (2004) Molecular chaperones function as steroid receptor nuclear mobility factors. Proc. Natl. Acad. Sci. USA 101, 2876–81.CrossRefPubMedGoogle Scholar
  21. 21.
    Stavreva, D. A., Muller, W. G., Hager, G. L., Smith, C. L., and McNally, J. G. (2004) Rapid glucocorticoid receptor exchange at a promoter is coupled to transcription and regulated by chaperones and proteasomes. Mol. Cell. Biol. 24, 2682–97.CrossRefPubMedGoogle Scholar
  22. 22.
    Klokk, T. I., Kurys, P., Elbi, C., Nagaich, A. K., Hendarwanto, A., Slagsvold, T., Chang, C.Y., Hager, G. L., and Saatcioglu, F. (2007) Ligand-specific dynamics of the androgen receptor at its response element in living cells. Mol. Cell. Biol. 27, 1823–43.CrossRefPubMedGoogle Scholar
  23. 23.
    Marcelli, M., Stenoien, D. L., Szafran, A. T., Simeoni, S., Agoulnik, I. U., Weigel, N. L., Moran, T., Mikic, I., Price, J. H., and Mancini, M. A. (2006) Quantifying effects of ligands on androgen receptor nuclear translocation, intranuclear dynamics, and solubility. J. Cell. Biochem. 98, 770–88.CrossRefPubMedGoogle Scholar
  24. 24.
    Masiello, D., Cheng, S., Bubley, G. J., Lu, M. L., and Balk, S. P. (2002) Bicalutamide functions as an androgen receptor antagonist by assembly of a transcriptionally inactive receptor. J. Biol. Chem. 277, 26321–26.CrossRefPubMedGoogle Scholar
  25. 25.
    Kang, Z., Pirskanen, A., Janne, O. A., and Palvimo, J. J. (2002) Involvement of proteasome in the dynamic assembly of the androgen receptor transcription complex. J. Biol. Chem. 277, 48366–71.CrossRefPubMedGoogle Scholar
  26. 26.
    Veldscholte, J., Ris-Stalpers, C., Kuiper, G. G., Jenster, G., Berrevoets, C., Claassen, E., van Rooij, H. C., Trapman, J., Brinkmann, A. O., and Mulder, E. (1990) A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem. Biophys. Res. Commun. 173, 534–40.CrossRefPubMedGoogle Scholar
  27. 27.
    Hara, T., Miyazaki, J., Araki, H., Yamaoka, M., Kanzaki, N., Kusaka, M., and Miyamoto, M. (2003) Novel mutations of androgen receptor: a possible mechanism of bicalutamide withdrawal syndrome. Cancer Res. 63, 149–53.PubMedGoogle Scholar
  28. 28.
    Schaaf, M. J. M., Lewis-Tuffin, L. J., and Cidlowski, J. A. (2005) Ligand-selective targeting of the glucocorticoid receptor to nuclear subdomains is associated with decreased receptor mobility. Mol. Endocrinol. 19, 1501–15.CrossRefPubMedGoogle Scholar
  29. 29.
    Martinez, E. D., Rayasam, G. V., Dull, A. B., Walker, D. A., and Hager, G. L. (2005) An estrogen receptor chimera senses ligands by nuclear translocation. J. Steroid Biochem. Mol. Biol. 97, 307–21.CrossRefPubMedGoogle Scholar
  30. 30.
    Sharp, Z. D., Mancini, M. G., Hinojos, C. A., Dai, F., Berno, V., Szafran, A. T., Smith, K. P., Lele, T. T., Ingber, D. E., and Mancini, M. A. (2006) Estrogen-receptor-α exchange and chromatin dynamics are ligand- and domain-dependent. J. Cell Sci. 119, 4101–16.CrossRefPubMedGoogle Scholar
  31. 31.
    Meijsing, S. H., Elbi, C., Luecke, H. F., Hager, G. L., and Yamamoto, K. R. (2007) The ligand binding domain controls glucocorticoid receptor dynamics independent of ligand release. Mol. Cell. Biol. 27, 2442–51.CrossRefPubMedGoogle Scholar
  32. 32.
    Van Royen, M. E., Cunha, S. M., Brink, M. C., Mattern, K. A., Nigg, A. L., Dubbink, H. J., Verschure, P. J., Trapman, J., and Houtsmuller, A. B. (2007) Compartmentalization of androgen receptor protein-protein interactions in living cells. J. Cell Biol. 177, 63–72.CrossRefPubMedGoogle Scholar
  33. 33.
    Rosenfeld, M. G., Lunyak, V. V., and Glass, C. K. (2006) Sensors and signals: a coactivator/ corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev. 20, 1405–28.CrossRefPubMedGoogle Scholar
  34. 34.
    Griekspoor, A., Zwart, W., Neefjes, J., Michalides, R. (2007) Visualizing the action of steroid hormone receptors in living cells. Nucl. Recept. Signal. 5, e003.PubMedGoogle Scholar
  35. 35.
    Sato, M. (2006) Imaging molecular events in single living cells. Anal. Bioanal. Chem. 386, 435–43.CrossRefPubMedGoogle Scholar
  36. 36.
    Day, R. N., Periasamy, A., and Schaufele, F. (2001) Fluorescence resonance energy transfer microscopy of localized protein interactions in the living cell nucleus. Methods 25, 4–18.CrossRefPubMedGoogle Scholar
  37. 37.
    Day, R. N., Nordeen, S. K., and Wan, Y. (1999) Visualizing protein-protein interactions in the nucleus of the living cell. Mol. Endocrinol. 13, 517–26.CrossRefPubMedGoogle Scholar
  38. 38.
    Kenworthy, A. K. (2001) Imaging proteinprotein interactions using fluorescence resonance energy transfer microscopy. Methods 24, 289–96.CrossRefPubMedGoogle Scholar
  39. 39.
    Clegg, R. M. (1995) Fluorescence resonance energy transfer. Curr. Opin. Biotechnol. 6, 103–10.CrossRefPubMedGoogle Scholar
  40. 40.
    Labas, Y. A., Gurskaya, N. G., Yanushevich, Y. G., Fradkov, A. F., Lukyanov, K. A., Lukyanov, S. A., and Matz, M. V. (2002) Diversity and evolution of the green fluorescent protein family. Proc. Natl. Acad. Sci. USA 99, 4256–61.CrossRefPubMedGoogle Scholar
  41. 41.
    Zhang, J., Campbell, R. E., Ting, A. Y., and Tsien, R. Y. (2002) Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 3, 906–18.CrossRefPubMedGoogle Scholar
  42. 42.
    Shaner, N. C., Steinbach, P. A., and Tsien, R. Y. (2005) A guide to choosing fluorescent proteins. Nat. Methods 2, 905–09.CrossRefPubMedGoogle Scholar
  43. 43.
    Piston, D. W., and Kremers, G. J. (2007) Fluorescent protein FRET: the good, the bad and the ugly. Trends Biochem. Sci. 32, 407–14.CrossRefPubMedGoogle Scholar
  44. 44.
    Rizzo M. A., Springer G. H., Granada B, Piston D. W. (2004) An improved cyan fluorescent protein variant useful for FRET. Nat. Biotechnol. 22, 445–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Ai, H. W., Henderson, J. N., Remington, S. J., and Campbell, R. E. (2006) Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging. Biochem. J. 400, 531–40.CrossRefPubMedGoogle Scholar
  46. 46.
    Kremers, G. J., Goedhart, J., van Munster, E. B., and Gadella, Jr, T. W. J. (2006) Cyan and yellow super fluorescent proteins with improved brightness, protein folding, and FRET Forster radius. Biochemistry 45, 6570–80.CrossRefPubMedGoogle Scholar
  47. 47.
    Zacharias, D. A., Violin, J. D., Newton, A. C., and Tsien, R. Y. (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–6.CrossRefPubMedGoogle Scholar
  48. 48.
    Griesbeck, O., Baird, G. S., Campbell, R. E., Zacharias, D. A., and Tsien, R. Y. (2001) Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J. Biol. Chem. 276, 29188–94.CrossRefPubMedGoogle Scholar
  49. 49.
    Nagai, T., Ibata, K., Park, E. S., Kubota, M., Mikoshiba, K., and Miyawaki, A. (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90.CrossRefPubMedGoogle Scholar
  50. 50.
    Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N., Palmer, A. E., and Tsien, R. Y. (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–72.CrossRefPubMedGoogle Scholar
  51. 51.
    Karasawa, S., Araki, T., Nagai, T., Mizuno, H., and Miyawaki, A. (2004) Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer. Biochem J. 381, 307–12.CrossRefPubMedGoogle Scholar
  52. 52.
    Merzlyak, E. M., Goedhart, J., Shcherbo, D., Bulina, M. E., Shcheglov, A. S., Fradkov, A. F., Gaintzeva, A., Lukyanov, K. A., Lukyanov, S., Gadella, Jr, T. W. J., and Chudakov, D. M. (2007) Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nat. Methods 4, 555–7.CrossRefPubMedGoogle Scholar
  53. 53.
    Zimmermann, T., Rietdorf, J., Girod, A., Georget, V., and Pepperkok, R. (2002) Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair. FEBS Lett. 531, 245–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Dinant, C., Van Royen, M. E., Vermeulen, W., and Houtsmuller, A. B. (2008) Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching. J. Microsc. 231, 97–104.CrossRefPubMedGoogle Scholar
  55. 55.
    Jares-Erijman EA, J. T. (2003) FRET imaging. Nat. Biotechnol. 21, 1387–95.CrossRefGoogle Scholar
  56. 56.
    Xia, Z., and Liu, Y. (2001) Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes. Biophys. J. 81, 2395–402.CrossRefPubMedGoogle Scholar
  57. 57.
    Gordon, G. W., Berry, G., Liang, X. H., Levine, B., and Herman, B. (1998) Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Bio-phys. J. 74, 2702–13.Google Scholar
  58. 58.
    Van Rheenen, J., Langeslag, M., and Jalink, K. (2004) Correcting confocal acquisition to optimize imaging of fluorescence resonance energy transfer by sensitized emission. Biophys. J. 86, 2517–29.CrossRefPubMedGoogle Scholar
  59. 59.
    Bastiaens, P. I. H., Majoul, I. V., Verveer, P. J., Söling, H.D., and Jovin, T. M. (1996) Imaging the intracellular trafficking and state of the AB5 quaternary structure of cholera toxin. EMBO J. 15, 4246–53.PubMedGoogle Scholar
  60. 60.
    Bastiaens, P. I. H., and Jovin, T. M. (1996) Microspectroscopic imaging tracks the intracellular processing of a signal transduction protein: Fluorescent-labeled protein kinase C beta I. Proc. Natl. Acad. Sci. USA 93, 8407–12.CrossRefPubMedGoogle Scholar
  61. 61.
    Karpova, T. S., Baumann, C. T., He, L., Wu, X., Grammer, A., Lipsky, P., Hager, G. L., and McNally, J. G. (2003) Fluorescence resonance energy transfer from cyan to yellow fluorescent protein detected by acceptor photobleaching using confocal microscopy and a single laser. J. Microsc. 209, 56–70.CrossRefPubMedGoogle Scholar
  62. 62.
    Bastiaens, P. I. H., and Squire, A. (1999) Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends Cell Biol. 9, 48–52.CrossRefPubMedGoogle Scholar
  63. 63.
    Wallrabe, H., and Periasamy, A. (2005) Imaging protein molecules using FRET and FLIM microscopy. Curr. Opin. Biotechnol. 16, 19–27.CrossRefPubMedGoogle Scholar
  64. 64.
    Van Munster, E. B., and Gadella, Jr, T. W. J. (2005) Fluorescence Lifetime Imaging Microscopy (FLIM) in “Advances In Biochemical Engineering/Biotechnology” (Rietdorf, J., ed.), Vol. 95, Springer-Verlag GmbH, Berlin, pp. 143–75.Google Scholar
  65. 65.
    Van de Wijngaart, D. J., van Royen, M. E., Hersmus, R., Pike, A. C. W., Houtsmuller, A. B., Jenster, G., Trapman, J., and Dubbink, H. J. (2006) Novel FXXFF and FXXMF motifs in androgen receptor cofactors mediate high affinity and specific interactions with the ligand-binding domain. J. Biol. Chem. 281, 19407–16.CrossRefPubMedGoogle Scholar
  66. 66.
    Bai, Y., and Giguere, V. (2003) Isoform-selective interactions between estrogen receptors and steroid receptor coactivators promoted by estradiol and ErbB-2 signaling in living cells. Mol. Endocrinol. 17, 589–99.CrossRefPubMedGoogle Scholar
  67. 67.
    Weatherman, R. V., Chang, C.Y., Clegg, N. J., Carroll, D. C., Day, R. N., Baxter, J. D., McDonnell, D. P., Scanlan, T. S., and Schaufele, F. (2002) Ligand-selective interactions of ER detected in living cells by fluorescence resonance energy transfer. Mol. Endocrinol. 16, 487–96.CrossRefPubMedGoogle Scholar
  68. 68.
    Llopis, J., Westin, S., Ricote, M., Wang, J., Cho, C. Y., Kurokawa, R., Mullen, T. M., Rose, D. W., Rosenfeld, M. G., Tsien, R. Y., and Glass, C. K. (2000) Ligand-dependent interactions of coactivators steroid receptor coactivator-1 and peroxisome proliferator-activated receptor binding protein with nuclear hormone receptors can be imaged in live cells and are required for transcription. Proc. Natl. Acad. Sci. USA 97, 4363–68.CrossRefPubMedGoogle Scholar
  69. 69.
    Mukherjee, R., Sun, S., Santomenna, L., Miao, B., Walton, H., Liao, B., Locke, K., Zhang, J.H., Nguyen, S. H., and Zhang, L. T. (2002) Ligand and coactivator recruitment preferences of peroxisome proliferator activated receptor-α. J. Steroid Biochem. Mol. Biol. 81, 217–25.CrossRefPubMedGoogle Scholar
  70. 70.
    Schaufele, F., Chang, C.Y., Liu, W., Baxter, J. D., Nordeen, S. K., Wan, Y., Day, R. N., and McDonnell, D. P. (2000) Temporally distinct and ligand-specific recruitment of nuclear receptor-interacting peptides and cofactors to subnuclear domains containing the estrogen receptor. Mol. Endocrinol. 14, 2024–39.CrossRefPubMedGoogle Scholar
  71. 71.
    Awais, M., Sato, M., Umezawa, Y. (2007) Imaging of selective nuclear receptor modulator-induced conformational changes in the nuclear receptor to allow interaction with coactivator and corepressor proteins in living cells. ChemBioChem. 8, 737–43.CrossRefPubMedGoogle Scholar
  72. 72.
    Awais, M., Sato, M., Sasaki, K., and Umezawa, Y. (2004) A genetically encoded fluorescent indicator capable of discriminating estrogen agonists from antagonists in living cells. Anal. Chem. 76, 2181–86.CrossRefPubMedGoogle Scholar
  73. 73.
    Awais, M., Sato, M., and Umezawa, Y. (2007) Optical probes to identify the glucocorticoid receptor ligands in living cells. Steroids 72, 949–54.CrossRefPubMedGoogle Scholar
  74. 74.
    Awais, M., Sato, M., and Umezawa, Y. (2007) A fluorescent indicator to visualize ligand-induced receptor/coactivator interactions for screening of peroxisome prolifera-tor-activated receptor-γ ligands in living cells. Biosens. Bioelectron. 22, 2564–69.CrossRefPubMedGoogle Scholar
  75. 75.
    Awais, M., Sato, M., Lee X., Umezawa Y. (2006) A fluorescent indicator to visualize activities of the androgen receptor ligands in single living cells. Angew. Chem. Int. Ed. Engl. 45, 2707–12.CrossRefPubMedGoogle Scholar
  76. 76.
    Zhou, G., Cummings, R., Li, Y., Mitra, S., Wilkinson, H. A., Elbrecht, A., Hermes, J. D., Schaeffer, J. M., Smith, R. G., and Moller, D. E. (1998) Nuclear receptors have distinct affinities for coactivators: characterization by fluorescence resonance energy transfer. Mol. Endocrinol. 12, 1594–604.CrossRefPubMedGoogle Scholar
  77. 77.
    Day, R. N. (1998) Visualization of Pit-1 transcription factor interactions in the living cell nucleus by fluorescence resonance energy transfer microscopy. Mol. Endocrinol. 12, 1410–19.CrossRefPubMedGoogle Scholar
  78. 78.
    Zwart, W., Griekspoor, A., Berno, V., Lakeman, K., Jalink, K., Mancini, M., Neefjes, J., Michalides, R. (2007) PKA-induced resistance to tamoxifen is associated with an altered orientation of ERalpha towards co-activator SRC-1. EMBO J. 26, 3534–44.CrossRefPubMedGoogle Scholar
  79. 79.
    Dubbink, H. J., Hersmus, R., Verma, C. S., van der Korput, J. A. G. M., Berrevoets, C. A., van Tol, J., Ziel-van der Made, A. C. J., Brinkmann, A. O., Pike, A. C. W., and Trapman, J. (2004) Distinct recognition modes of FXXLF and LXXLL motifs by the androgen receptor. Mol. Endocrinol. 18, 2132–50.CrossRefPubMedGoogle Scholar
  80. 80.
    Hur, E., Pfaff, S. J., Payne, E. S., Gron, H., Buehrer, B. M., and Fletterick, R. J. (2004) Recognition and accommodation at the androgen receptor coactivator binding interface. PLoS Biol. 2, E274.CrossRefPubMedGoogle Scholar
  81. 81.
    Doesburg, P., Kuil, C. W., Berrevoets, C. A., Steketee, K., Faber, P. W., Mulder, E., Brinkmann, A. O., and Trapman, J. (1997) Functional in vivo interaction between the amino-terminal, transactivation domain and the ligand binding domain of the androgen receptor. Biochemistry 36, 1052–64.CrossRefPubMedGoogle Scholar
  82. 82.
    He, B., Kemppainen, J. A., and Wilson, E. M. (2000) FXXLF and WXXLF sequences mediate the NH2-terminal interaction with the ligand binding domain of the androgen receptor. J. Biol. Chem. 275, 22986–94.CrossRefPubMedGoogle Scholar
  83. 83.
    Schaufele, F., Carbonell, X., Guerbadot, M., Borngraeber, S., Chapman, M. S., Ma, A. A. K., Miner, J. N., and Diamond, M. I. (2005) The structural basis of androgen receptor activation: Intramolecular and intermolecular amino-carboxy interactions. Proc. Natl. Acad. Sci. USA 102, 9802–07.CrossRefPubMedGoogle Scholar
  84. 84.
    Nishi, M., Tanaka, M., Matsuda, K., Sunaguchi, M., and Kawata, M. (2004) Visualization of glucocorticoid receptor and mineralocorticoid receptor interactions in living cells with GFP-based fluorescence resonance energy transfer. J. Neurosci. 24, 4918–27.CrossRefPubMedGoogle Scholar
  85. 85.
    Padron, A., Li, L., Kofoed, E. M., and Schaufele, F. (2007) Ligand-selective interdomain conformations of estrogen receptor-α. Mol. Endocrinol. 21, 49–61.CrossRefPubMedGoogle Scholar
  86. 86.
    Michalides, R., Griekspoor, A., Balkenende, A., Verwoerd, D., Janssen, L., Jalink, K., Floore, A., Velds, A., van 't Veer, L., and Neefjes, J. (2004) Tamoxifen resistance by a conformational arrest of the estrogen receptor-α PKA activation in breast cancer. Cancer Cell 5, 597–605.CrossRefPubMedGoogle Scholar
  87. 87.
    Zwart, W., Griekspoor, A., Rondaij, M., Verwoerd, D., Neefjes, J., and Michalides, R. (2007) Classification of anti-estrogens according to intramolecular FRET effects on phospho-mutants of estrogen receptor-α. Mol. Cancer Ther. 6, 1526–33.CrossRefPubMedGoogle Scholar
  88. 88.
    Sui, X., Bramlett, K. S., Jorge, M. C., Swanson, D. A., von Eschenbach, A. C., and Jenster, G. (1999) Specific androgen receptor activation by an artificial coactivator. J. Biol. Chem. 274, 9449–54.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Martin E. van Royen
    • 1
  • Christoffel Dinant
    • 1
  • Pascal Farla
    • 1
  • Jan Trapman
    • 1
  • Adriaan B. Houtsmuller
    • 1
  1. 1.Department of PathologyJosephine Nefkens Institute, Erasmus MCRotterdamThe Netherlands

Personalised recommendations