Electrochemical Detection of DNA Hybridization Using Micro and Nanoparticles

  • María Teresa Castañeda
  • Salvador Alegret
  • Arben Merkoçi
Part of the Methods in Molecular Biology™ book series (MIMB, volume 504)


A novel, rapid, and sensitive protocol for the electrochemical detection of DNA hybridization that take the advantage of a magnetic separation/mixing process and the use of monomaleimido-gold nanoparticles of 1.4 nm diameter as label is presented. A sandwich-type assay is formed in this protocol by the capture probe DNA immobilized on the surface of magnetic beads and the double hybridization of the target (cystic fibrosis related DNA), first with the immobilized probe, and then with signaling probe DNA labeled with monomaleimido-gold nanoparticles. When the assay is completed, the final conjugate is transferred onto genomagnetic sensor surface (graphite epoxy composite electrode with a magnet inside) used as working electrode, and then the direct determination of gold nanoparticles by differential pulse voltammetry striping technique is carried out. This protocol is quite promising for numerous applications in different fields as clinical analysis, environmental control as well as other applications.

Key words

Gold nanoparticles DNA analysis Magnetic beads Cystic fibrosis Genosensor Electrochemical detection 



This work is supported by the Spanish “Ramón Areces” foundation (project ‘Bionanosensores’) and MEC (Madrid) thorough the following projects: MAT2008-03079/NAN, and Consolider-Ingenio 2010 (CSD2006-00012).


  1. 1.
    Pejcic, B., De Marco, R., and Parkinson, G. (2006) The role of biosensors in the detection of emerging infectious diseases. Analyst, 131, 1079–109CrossRefPubMedGoogle Scholar
  2. 2.
    Cai, H., Shang, Ch., and Hsing, I. M. (2004) Sequence-specific electrochemical recognition of multiple species using nanoparticle labels. Anal. Chim. Acta, 523, 61–68CrossRefGoogle Scholar
  3. 3.
    Lin, F. Y. H., Sabri, M., Alirezaie, J., Li, D., and Sherman, P. M. (2005) Development of a nanoparticle-labeled microfluidic immunoassay for detection of pathogenic MICROORGANISMS. Clin. Diagn. Lab. Immunol., 12, 418–425PubMedGoogle Scholar
  4. 4.
    Ambrosi, A., Castañeda, M. T., Killard, A. J., Smyth, M. R., Alegret, S., and Merko×i, A., (2007) Double-codified gold nanola-bels for enhanced immunoanalysis. Anal. Chem., 79, 5232–5240CrossRefPubMedGoogle Scholar
  5. 5.
    Zhang, J., Song, S., Zhang, L., Wang, L., Wu, H., Pan, D., and Fan, Ch. (2006) Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): Effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes. J. Am. Chem. Soc., 128, 8575–8580CrossRefPubMedGoogle Scholar
  6. 6.
    Sinha, R., Kim, G. J. and Nie, S., and Shin, D. M. (2006) Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol. Cancer Ther. 5, 1909–1917CrossRefPubMedGoogle Scholar
  7. 7.
    Cuenya, B. R., Hyeon Baeck, S., Jaramillo, T. F., and McFarland, E. W. (2003) Size-and support-dependent electronic and catalytic properties of Au0/Au3+ nanoparticles synthesized from block copolymer micelles. J. Am. Chem. Soc., 125, 12928–12934CrossRefPubMedGoogle Scholar
  8. 8.
    McNeil, S. E. (2005) Nanotechnology for the biologist. J. Leukocyte Biol., 78, 585–594CrossRefPubMedGoogle Scholar
  9. 9.
    DeBenedetti, B., Vallauri, D., Deorsola, F. A., and Martínez García, M. (2006) Synthesis of TiO2 nanospheres through microemulsion reactive precipitation. J. Electroceramics, 17, 37–40CrossRefGoogle Scholar
  10. 10.
    Shankar, S.S., Suresh, B., and Murali, S. (2005) Synthesis of gold nanospheres and nanotriangles by the Turkevich approach. J. Nanosci. Nanotechnol., 5, 1721–1727CrossRefPubMedGoogle Scholar
  11. 11.
    Tai, H. H., Koo, H. -J., and Chung, B. H. (2007) Shape-controlled syntheses of gold nanoprisms and nanorods influenced by specific adsorption of halide ions. J. Phys. Chem. C, 111, 1123–1130CrossRefGoogle Scholar
  12. 12.
    Hyuk Im, S., Tack Lee, Y., Wiley, B., and Xia, Y., (2005) Large-scale synthesis of silver nanocubes: The role of HCl in promoting cube perfection and monodispersity. Angew. Chem. Int. Ed., 44, 2154–2157CrossRefGoogle Scholar
  13. 13.
    Mendoza-Reséndez, R., Bomati-Miguel O., Morales, M. P., Bonville, P., and Serna C. J. (2004) Microstructural characterization of ellipsoidal iron metal nanoparticles. Nanotechnology, 15, S254–S258CrossRefGoogle Scholar
  14. 14.
    Hernández-Santos, D., González-García, M. B., and Costa-García, A., (2002) Metal-nanoparticles based electroanalysis. Electro-analysis, 14, 1225–1235Google Scholar
  15. 15.
    Alivisatos, P. (2004) The use of nanocrys-tals in biological detection. Nat. Biotech-nol., 22, 47–52CrossRefGoogle Scholar
  16. 16.
    Rosi, N. L., and Mirkin, C. A. (2005) Nanostructures in biodiagnostics. Chem. Rev., 105, 1547–1562CrossRefPubMedGoogle Scholar
  17. 17.
    Azzazy, H. M. E., Mansour M. M. H., and Kazmierczak, S. C. (2006) Nanodiagnostics: A New Frontier for Clinical Laboratory Medicine. Clin. Chem., 52, 1238–1246CrossRefPubMedGoogle Scholar
  18. 18.
    Katz, E., and Willner, I. (2004) Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties and applications. I. Angew. Chem. Int. Ed., 43, 6042–6108CrossRefGoogle Scholar
  19. 19.
    Liz-Marzan, L. M. (2004) Nanometals: Formation and color. Materials Today, 7, 26–31CrossRefGoogle Scholar
  20. 20.
    Burda, C., Chen, X., Narayanan, R., and El-Sayed, M. A. (2005) Chemistry and properties of nanocrystals of different shapes. Chem. Rev., 105, 1025–1102CrossRefPubMedGoogle Scholar
  21. 21.
    Miscoria, S.A., Barrera, G. D., and Rivas, G. A. (2005) Enzymatic biosensor based on carbon paste electrodes modified with gold nanoparticles and polyphenol oxidase. Electroanalysis 17, 1578–1582CrossRefGoogle Scholar
  22. 22.
    Dos Santos, D. S. Jr., Alvarez-Puebla, R. A., Oliveira, O. N. Jr., and Aroca, R. F. (2005) Controlling the size and shape of gold nanoparticles in fulvic acid colloidal solutions and their optical characterization using SERS. J. Mater. Chem., 15, 3045– 3049CrossRefGoogle Scholar
  23. 23.
    Panda, B. R., and Chattopadhyay, A. (2007) Synthesis of Au Nanoparticles at “all” pH by H2O2 Reduction of HAuCl4. J. Nanosci. Nanotechnol., 7, 1911–1915CrossRefPubMedGoogle Scholar
  24. 24.
    Luo, Y., and Sun X. (2007) Sunlight-driving formation and characterization of size-controlled gold nanoparticles. J. Nanosci. Nanotechnol., 7, 708–711CrossRefPubMedGoogle Scholar
  25. 25.
    Castañeda, M. T., Alegret, S., and Merko×i, A. (2007) Electrochemical sensing of DNA using gold nanoparticles. Electroanalysis, 19, 743–753CrossRefGoogle Scholar
  26. 26.
    Merko×i, A. (2007) Electrochemical bio-sensing with nanoparticles. FEBS J., 274, 310–316CrossRefGoogle Scholar
  27. 27.
    Luo, X., Morrin, A., Killard, A. J., and Smyth, M. R. (2006) Application of nan-oparticles in electrochemical sensors and biosensors. Electroanalysis, 18, 319–326CrossRefGoogle Scholar
  28. 28.
    Pumera, M., Castañeda, M. T., Pividori, M. I., Eritja, R., Merko×i A., and Alegret, S. (2005) Magnetically trigged direct electrochemical detection of DNA hybridization using Au67 quantum dot as electrical tracer. Langmuir, 21, 9625–9629CrossRefPubMedGoogle Scholar
  29. 29.
    Ozsoz, M., Erdem, A., Kerman, K., Ozkan, D., Tugrul, B., and Topcuoglu, N. (2003) Electrochemical genosensor based on colloidal gold nanoparticles for the detection of factor V Leiden mutation using disposable pencil graphite electrodes. Anal. Chem., 75, 2181–2187CrossRefPubMedGoogle Scholar
  30. 30.
    Castañeda, M. T., Merko×i, A., Pumera, M., and Alegret, S., (2007) Electrochemical genosensors for biomedical applications based on gold nanoparticles. Biosens. Bio-electron., 22, 1961–1967Google Scholar
  31. 31.
    Wang, J., Xu, D., Kawde, A. N., and Pol-sky R. (2001) Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. Anal. Chem., 73, 5576–5581CrossRefPubMedGoogle Scholar
  32. 32.
    Palecek, E., Fojta, M., and Jelen, F. (2002) New approaches in the development of DNA sensors: hybridization and electrochemical detection of DNA and RNA at two different surfaces. Bioelectrochemistry, 56, 85–90CrossRefPubMedGoogle Scholar
  33. 33.
    Gijs, M. A. M., (2004) Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluid. Nanofluidics, 1, 22–40Google Scholar
  34. 34.
    Lim, C. T., and Zhang Y. (2007) Bead-based microfluidic immunoassays: The next generation. Biosens. Bioelectron., 22, 1197– 1204CrossRefPubMedGoogle Scholar
  35. 35.
    Torre, B. G., Morales, J. C., Avino, A., Iacopino, D., Ongaro, A., Fitzmaurice, D., Murphy, D., Doyle, H., Redmond, G., and Eritja, R. (2002) Synthesis of oligonucle-otides carrying anchoring groups and their use in the preparation of oligonucleotide-gold conjugates. Helv. Chim. Acta, 85, 2594–2607CrossRefGoogle Scholar
  36. 36.
    Bangs Laboratories Inc., TechNote 101 (1999)Google Scholar
  37. 37.
    Pumera, M., Aldavert, M., Mills, C., Merko×i, A., and Alegret, S. (2005) Direct voltam-metric determination of gold nanoparticles using graphite—epoxy composite electrodes. Electrochim. Acta, 50, 3702–3707CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • María Teresa Castañeda
    • 1
  • Salvador Alegret
    • 2
  • Arben Merkoçi
    • 1
  1. 1.Nanobioelectronics & Biosensors GroupInstitut Catalá de Nanotecnologia, Barcelona, Catalonia, Spain Group of Sensors & Biosensors, Autonomous University of BarcelonaBarcelonaSpain
  2. 2.Group of Sensors & BiosensorsAutonomous University of BarcelonaBarcelonaSpain

Personalised recommendations