Electrochemical Biosensor Technology: Application to Pesticide Detection

  • Ilaria Palchetti
  • Serena Laschi
  • Marco Mascini
Part of the Methods in Molecular Biology™ book series (MIMB, volume 504)


In recent years, electrochemical sensors and biosensors are becoming an accepted part of analytical chemistry since they satisfy the expanding need for rapid and reliable measurements.

An area in which electrochemical biosensors perhaps show the greatest diversity and potential for development involves the measurement of environmentally significant parameters. The increasing number of pollutants in the environment calls for fast and cost-effective analytical requirements. In this context, biosensors appear as suitable alternative or complementary analytical tools.

The aim of this chapter is to review some basic concept concerning the electrochemical biosensors and to illustrate a protocol for the detection of environmental organic pollutants on the basis of electrochemical biosensors. In particular, a method based on the inhibition of the enzyme acetylcholinesterase (AChE) for the detection of organophosphorus and carbamate pesticides will be described in detail.

Key words

Electrochemical biosensor Inhibition AChE Organophosphorus Carbamate Pesticide 


  1. 1.
    Eggins B.R., (2002) Chemical Sensors and Biosensors. Wiley, UKGoogle Scholar
  2. 2.
    Invitski D., Abdel-Hamid I., Atanasov P., Wilkins E., Striker S., (2000) Application of electrochemical biosensors for detection of food pathogenic bacteria. Electroanalysis, 12(5), 317–325CrossRefGoogle Scholar
  3. 3.
    Kellner R., Mermet J.M., Otto M., Valcar-cel M., Widmer H.M., (2004) Biosensors, in Analytical Chemistry: A modern Approach to Analytical Science, Second Edition, Wiley-VCH Verlag GmbH & Co, pp. 1078–1109Google Scholar
  4. 4.
    Cass A.E.G. (ed.) (1990) Biosensors A practical Approach. Oxford University Press, NYGoogle Scholar
  5. 5.
    Canh T.M., (1993) Biosensors. Chapman & Hall, London, UKGoogle Scholar
  6. 6.
    Clark L.C., Lyons C., (1962) Electrode systems for continuous monitoring cardiovascular surgery. Ann. N. Y. Acad. Sci., 102, 29–45CrossRefPubMedGoogle Scholar
  7. 7.
    Alvarez-Icaza M., Bilitewski U., (1993) Mass-production of biosensors. Anal. Chem., 65, 525A–533ACrossRefGoogle Scholar
  8. 8.
    Palchetti I., Laschi S., Mascini M., (2005) Miniaturised stripping-based carbon modified sensor for in field analysis of heavy metals. Analytica Chimica Acta, 530, 61–67CrossRefGoogle Scholar
  9. 9.
    Laschi S., Palchetti I., Marrazza G., Mascini M., (2006) Development of disposable low density screen-printed electrode arrays for simultaneous electrochemical measurements of the hybridisation reaction. J. Electroanal. Chem., 593, 211–218CrossRefGoogle Scholar
  10. 10.
    Farabullini F., Lucarelli F., Palchetti I., Mar-razza G., Mascini M., (2007) Disposable electrochemical genosensor for the simultaneous analysis of different bacterial food contaminants. Biosens. Bioelectron., 22, 1544–1549CrossRefPubMedGoogle Scholar
  11. 11.
    Wang J., (1994) Decentralized electrochemical monitoring of trace metals: from disposable strips to remote electrodes. Analyst, 119, 763–766CrossRefGoogle Scholar
  12. 12.
    Centi S., Silva E., Laschi S., Palchetti I., Mascini M., (2007) Polychlorinated biphenyls (PCBs) detection in milk samples by an electrochemical magneto-immunosensor (EMI) coupled to solid phase extraction (SPE) and disposable low density arrays. Analytica Chimica Acta, 594, 9–16CrossRefPubMedGoogle Scholar
  13. 13.
    Mascini M., Palchetti I., (2005) Enzyme Electrodes, Ion — Selective Electrodes. in Encyclopedia of Analytical Science, 4. Elsevier, Amsterdam, pp. 520–526CrossRefGoogle Scholar
  14. 14.
    Rodriguez-Mozaz S., Lopez de Alda M.J., Marco M.-P., Barcelo D., (2005) Biosensors for environmental monitorino A global perspective. Talanta, 65, 291–297PubMedGoogle Scholar
  15. 15.
    Rogers K.R., (2006) Recent advances in biosensor techniques for environmental monitoring. Anal. Chim Acta, 568, 222–231CrossRefPubMedGoogle Scholar
  16. 16.
    Sanchez-Santed F., Canada F., Flores P., Lopez-Grancha M., Cardona D., (2004) Long-term neurotoxicity of Paraoxon and clorpyrifos: behavioural and pharmacological evidence. Neurotoxicol. terathol., 26, 35–317CrossRefGoogle Scholar
  17. 17.
    Noort D., Benschop H.P., Black R.M., (2002) Biomonitoring of exposure to chemical warfare agents: a review. Toxicol. Appl. Pharmacol., 184, 116–126CrossRefPubMedGoogle Scholar
  18. 18.
    Hooijschur E.W.J., Hulst A.G., De Jong A.L., De Reuver L.P., Van Krimpen S.H., Van Baar B.L.M., Wils E.R.J., Kientz C.E., Brinkman U.A. Th., (2002) Identification of chemicals related to the chemical weapons convention during an interlaboratory proficiency test. TrAC, 21, 116–130Google Scholar
  19. 19.
    Palleschi G., Bernabei M., Cremisini C., Mascini M., (1992) Determination of orga-nophosphorus insecticides with a choline electrochemical biosensor. Sens. Actuators B, 7, 513–517CrossRefGoogle Scholar
  20. 20.
    Tran-Minh C., Pandey P.C., Kumaran S., (1990) Studies on acetylcholine sensor and its analytical application based on the inhibition of cholinesterase. Bios. Bioelectron., 5, 461–471CrossRefGoogle Scholar
  21. 21.
    Cagnini A., Palchetti I., Lionti I., Mascini M., Turner A.P.F., (1995) Disposable ruthenized screen-printed biosensors for pesticides monitoring. Sens. Actuators B-Chem., 24, 85–89CrossRefGoogle Scholar
  22. 22.
    Palchetti I., Cagnini A., Del Carlo M., Coppi C., Mascini M., Turner A.P.F., (1997) Determination of anticholisterase pesticides in real samples using a disposable biosensor. Anal. Chim. Acta, 337, 315–321CrossRefGoogle Scholar
  23. 23.
    Hernandez S., Palchetti I., Mascini M., (2000) Determination of anticholinesterase activity for pesticides monitorino using a thiocholine sensor. Intern. J. Environ. Anal. Chem., 78, 263–278CrossRefGoogle Scholar
  24. 24.
    Marty J.-L., Mionetto N., Lacorte S., Barceló D., (1995) Validation of an enzymatic biosensor with various liquid chromatographic techniques for determining organophosphorus pesticides and carbaryl in freeze-dried waters. Anal. Chim. Acta, 311, 265–271CrossRefGoogle Scholar
  25. 25.
    Barceló D., Lacorte S., Marty J.-L., (1995) Validation of an enzymatic biosensor with liquid chromatography for pesticide monitoring. TrAC, 14, 334–340Google Scholar
  26. 26.
    Hart J.P., Hartley I.C., (1994) Voltammetric and amperometric studies of thiocholine at a screen-printed carbon electrode chemically modified with cobalt phthalocyanine: Studies towards a pesticide sensor. Analyst, 119, 259–263CrossRefGoogle Scholar
  27. 27.
    Martorell D., Céspedes F., Martínez-Fàbre-gas E., Alegret S., (1997) Determination of organophosphorus and carbamate pesticides using a biosensor based on a polishable, 7,7,8,8-tetracyanoquino-dimethane-modi-fied, graphite — epoxy biocomposite. Anal. Chim. Acta, 337, 305–313CrossRefGoogle Scholar
  28. 28.
    Silva Nunes G., Skládal P., Yamanaka Y., Bar-celó D., (1998) Determination of carbamate residues in crop samples by cholinesterase-based biosensors and chromatographic techniques. Anal. Chim. Acta, 362, 59–68CrossRefGoogle Scholar
  29. 29.
    Ricci F., Arduini F., Amine A., Moscone D., Palleschi G., (2004) Characterisation of prussian blue modified screen-printed electrodes for thiol detection. J. Electroanal. Chem., 563, 229–237CrossRefGoogle Scholar
  30. 30.
    Laschi S., Ogończyk D., Palchetti I., Mascini M., (2007) Evaluation of pesticide-induced acetylcholinesterase inhibition by means of disposable carbon-modified electrochemi cal biosensors. Enzyme Microb. Technol., 40, 485–489CrossRefGoogle Scholar
  31. 31.
    Suprun E., Evtugyn G., Budnikov H., Ricci F., Moscone D., Palleschi G., (2005) Acetyl-cholinesterase sensor based on screen-printed carbon electrode modified with prussian blue. Anal. Bioanal. Chem., 382, 597–604CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ilaria Palchetti
    • 1
  • Serena Laschi
    • 1
  • Marco Mascini
    • 1
  1. 1.Dipartimento di ChimicaUniversità degli Studi di FirenzeSesto FiorentinoItaly

Personalised recommendations