Advertisement

Electrochemical DNA Biosensors: Protocols for Intercalator-Based Detection of Hybridization in Solution and at the Surface

  • Kagan Kerman
  • Mun'delanji Vestergaard
  • Eiichi Tamiya
Part of the Methods in Molecular Biology™ book series (MIMB, volume 504)

Summary

An electrochemical DNA biosensor is a device that utilizes the inherent ability of two complementary strands of nucleic acids to form a double helix. The specificity of this reaction, namely hybridization, is used in the detection of target DNA sequences with a view toward developing point-of-care devices. Since the early 1990s, great progress has been made in this field, but there are still numerous challenges to overcome. This chapter describes the components of an electrochemical DNA biosensor for researchers new to the field, paying particular attention to intercalator-based DNA biosensors. We will use a well-defined electro-active DNA intercalator Hoechst 33258, as our running example. Two of the most classic DNA sensing methods: solution-based and surface-immobilized methods are discussed, along with guiding notes that would help identify and overcome possible problems in a typical electrochemical DNA biosensor experiment.

Keywords

Biosensor Electrochemical DNA Intercalator Hybridization Hoechst 33258 Screen-printed electrode (SPE) Probe-modified electrode Self-assembled DNA monolayer 

References

  1. 1.
    Eggins, B. R. (ed.) (1997) Biosensors: An introduction, Wiley, New York.Google Scholar
  2. 2.
    Kerman, K., Kobayashi, M. and Tamiya, E. (2004) Recent trends in DNA biosensor technology. Measur. Sci. Tech. 15, R1–R11.CrossRefGoogle Scholar
  3. 3.
    Murphy, L. (2006) Biosensors and bioelectro-chemistry. Curr. Opin. Chem. Biol. 10, 177–184.CrossRefPubMedGoogle Scholar
  4. 4.
    Soper, S.A., Brown, K., Ellington, A., Frazier, B., Garcia-Manero, G., Gau, V., Gutman, S.I., Hayes, D.F., Korte, B., Landers, J.L., Larson, D., Ligler, F., Majumdar, A., Mascini, M., Nolte, D., Rosenzweig, Z., Wang, J. and Wilson, D. (2006) Point-of-care biosensor systems for cancer diagnostics/prognostics. Biosens. Bioelectron. 21, 1932–1942CrossRefPubMedGoogle Scholar
  5. 5.
    Kerman, K., Vestergaard, M., Nagatani, N., Takamura, Y. and Tamiya, E. (2006) Electrochemical genosensor based on peptide nucleic acid-mediated PCR and asymmetric PCR techniques: Electrostatic interactions with a metal cation. Anal. Chem. 78, 2182–2189CrossRefPubMedGoogle Scholar
  6. 6.
    Kerman, K., Meric, B., Ozkan, D., Kara, P., Erdem, A. and Ozsoz, M. (2001) Electrochemical DNA biosensor for the determination of benzo[a]pyrene-DNA adducts. Anal. Chim. Acta 450, 45–52CrossRefGoogle Scholar
  7. 7.
    Kerman, K., Ozkan, D., Kara, P., Meric, B., Gooding, J.J. and Ozsoz, M. (2002) Vol-tammetric determination of DNA hybridization using methylene blue and self-assembled alkanethiol monolayer on gold electrodes. Anal. Chim. Acta 462, 39–47CrossRefGoogle Scholar
  8. 8.
    Kerman, K., Saito, M., Morita, Y., Taka-mura, Y., Ozsoz, M. and Tamiya, E. (2004) Electrochemical coding of single-nucleotide polymorphisms by monobase-modified gold nanoparticles. Anal. Chem. 76, 1877–1884CrossRefPubMedGoogle Scholar
  9. 9.
    Kerman, K., Morita, Y., Takamura, Y., Ozsoz, M. and Tamiya, E. (2004) Modification of Escherichia coli single-stranded DNA binding protein with gold nanoparticles for electrochemical detection of DNA hybridization. Anal. Chim. Acta510, 169–174CrossRefGoogle Scholar
  10. 10.
    Li, X., Lee, J.S. and Kraatz, H.-B. (2006) Electrochemical detection of single-nucleotide mismatches using an electrode microarray. Anal. Chem. 78, 6096–6101CrossRefPubMedGoogle Scholar
  11. 11.
    Li, X., Song, H., Nakatani, K. and Kraatz, H.-B. (2007) Exploiting small molecule binding to DNA for the detection of single-nucle-otide mismatches and their base environment. Anal. Chem. 79, 2552–2555CrossRefPubMedGoogle Scholar
  12. 12.
    Kerman, K., Chikae, M., Yamamura, S. and Tamiya, E. (2007) Gold nanoparticle-based electrochemical detection of protein phos-phorylation. Anal. Chim. Acta588, 26–33CrossRefPubMedGoogle Scholar
  13. 13.
    Pjura, P.E., Grzeskowiak, K. and Dickerson, R.E. (1987) Binding of Hoechst 33258 to the minor groove of B-DNA. J. Mol. Biol. 197, 257–271CrossRefPubMedGoogle Scholar
  14. 14.
    Teng, M.K., Usman, N., Frederick, C.A. and Wang, A.H. (1988) The molecular structure of the complex of Hoechst 33258 and the DNA dodecamer. Nucleic Acids Res. 16, 2671–2690CrossRefPubMedGoogle Scholar
  15. 15.
    de, C.T., Carrondo, M.A.A.F., Coll, M., Aymami, J., Wang, A.H.J., van der Marel, G.A., van Boom, J.H. and Rich, A. (1989) Binding of a Hoechst dye to d(CGCGATATCGCG) and its influence on the conformation of the DNA fragment. Biochemistry 28, 7849–7859CrossRefGoogle Scholar
  16. 16.
    Tanious, F.A., Hamelbeg, D., Bailly, C., Czarny, A., Boykin, D.W. and Wilson, W.D. (2004) DNA sequence dependent monomer-dimer binding modulation of asymmetric ben-zimidazole derivatives. J. Am. Chem. Soc. 126, 143–153CrossRefPubMedGoogle Scholar
  17. 17.
    Rohs, R., Sklenar, H., Lavery, R. and Roder, B. (2000) Methylene blue binding to DNA with alternating GC base sequence: a modeling study. J. Am. Chem. Soc. 122, 2860–2866CrossRefGoogle Scholar
  18. 18.
    an, K.X., Shibue, T. and Gross, M.L. (2000) Non-covalent complexes between DNA-binding drugs and double-stranded oligo-deoxynucleotides: a study by ESI ion-trap mass spectrometry. J. Am. Chem. Soc. 122, 300–307CrossRefGoogle Scholar
  19. 19.
    Kobayashi, M., Kusakawa, T., Saito, M., Kaji, S., Oomura, M., Iwabuchi, S., Morita, Y., Hasan, Q. and Tamiya, E. (2004) Electrochemical DNA quantification based on aggregation induced by Hoechst 33258. Elec-trochem. Commun. 6, 337–343Google Scholar
  20. 20.
    Chaumpluk, P., Chikae, M., Takamura, Y. and Tamiya, E. (2006) Novel electrochemical identification and semi quantification of bovine constituents in feedstuffs. Sci. Tech. Adv. Mater. 7, 263–269CrossRefGoogle Scholar
  21. 21.
    Saito, M., Kobayashi, M., Iwabuchi, S., Morita, Y., Takamura, Y. and Tamiya, E. (2004) DNA condensation monitoring after interaction with Hoechst 33258 by atomic force microscopy and fluorescence spectros-copy. J. Biochem. 136, 813–823CrossRefPubMedGoogle Scholar
  22. 22.
    Saito, M., Takamura, Y. and Tamiya, E. (2005) Nanoscale time-lapse AFM imaging in solution for DNA aggregation. Nanobiotechnology 1, 361–368CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Kagan Kerman
    • 1
  • Mun'delanji Vestergaard
    • 2
  • Eiichi Tamiya
    • 3
  1. 1.Department of ChemistryUniversity of Western OntarioLondonCanada
  2. 2.Japan Advanced Institute of Science and Technology (JAIST)School of Materials ScienceNomi CityJapan
  3. 3.Department of Applied Physics, Graduate School of EngineeringOsaka UniversitySuitaJapan

Personalised recommendations