Biosensors Based on Cantilevers

  • Mar Álvarez
  • Laura G. Carrascosa
  • Kiril Zinoviev
  • Jose A. Plaza
  • Laura M. Lechuga
Part of the Methods in Molecular Biology™ book series (MIMB, volume 504)


Microcantilevers based-biosensors are a new label-free technique that allows the direct detection of biomolecular interactions in a label-less way and with great accuracy by translating the biointeraction into a nanomechanical motion. Low cost and reliable standard silicon technologies are widely used for the fabrication of cantilevers with well-controlled mechanical properties. Over the last years, the number of applications of these sensors has shown a fast growth in diverse fields, such as genomic or proteomic, because of the biosensor flexibility, the low sample consumption, and the non-pretreated samples required. In this chapter, we report a dedicated design and a fabrication process of highly sensitive microcantilever silicon sensors. We will describe as well an application of the device in the environmental field showing the immunodetection of an organic toxic pesticide as an example. The cantilever biofunctionalization process and the subsequent pesticide determination are detected in real time by monitoring the nanometer-scale bending of the microcantilever due to a differential surface stress generated between both surfaces of the device.

Key words

Microcantilever Nanomechanical biosensors MEMs Immunoassay Pesticide detection Surface stress Biofunctionalization Biorecognition 



The authors acknowledge to the European Union (Project Optonanogen, IST-2001-37239). Authors thank Dr. Angel Montoya (Ci2B, University of Valencia, Spain) for the inmunoreagents.


  1. 1.
    Ziegler, C. (2004) Cantilever-based biosensors.Anal. Bioanal. Chem. 379, 946–959PubMedGoogle Scholar
  2. 2.
    Alvarez, M., Tamayo, J., Plaza, J.A., Zinoviev, K., Dominguez, C. and Lechuga, L.M. (2006) Dimension dependence of the ther-momechanical noise of microcantilevers.J. App. Phys. 99, 024910CrossRefGoogle Scholar
  3. 3.
    Alvarez, M., Calle, A., Tamayo, J., Lechuga, L.M., Abad, A. and Montoya, A. (2003) Development of nanomechanical biosensors for detection of the pesticide ddt.Biosen. Bio-electron. 18, 649–653Google Scholar
  4. 4.
    Mauriz, E., Calle, A., Lechuga, L.M., Quin-tana, J., Montoya, A. and Manclus, J.J. (2006) Real-time detection of chlorpyrifos at part per trillion levels in ground, surface and drinking water samples by a portable surface plasmon resonance immunosensor.Analytica Chimica Acta561, 40–47CrossRefGoogle Scholar
  5. 5.
    Zhang, J., Lang, H.P., Huber, F., Bietsch, A., Grange, W., Certa, U., Mckendry, R., Guntherodt, H., Hegner, M. and Gerber, C. (2006) Rapid and label-free nano-mechanical detection of biomarker transcripts in human RNA.Nat. Nanotech. 1, 214–220CrossRefGoogle Scholar
  6. 6.
    Ransley, J.H.T., Watari, M., Sukumaran, D., McKendry, R.A. and Seshia, A.A. (2006) Su8 bio-chemical sensor microarrays.Microelec-tron. Eng.83, 1621–1625CrossRefGoogle Scholar
  7. 7.
    Zinoviev, K., Dominguez, C., Plaza, J.A., Cadarso, V. and Lechuga, L.M. (2006) A novel optical waveguide microcantilever sensor for the detection of nanomechanical forces.J. Lightwave Technol. V.24(5)(2006) 24, 2132–2140CrossRefGoogle Scholar
  8. 8.
    Lechuga, L.M., Tamayo, J., Álvarez, M., Car-rascosa, L.G., Yufera, A., Doldán, R., Peralías, E., Rueda, A., Plaza, J.A., Zinoviev, K. et al. (2006) A highly sensitive microsystem based on nanomechanical biosensors for genomics applications.Sens. Actuators B118, 2–10CrossRefGoogle Scholar
  9. 9.
    Kumar, S. and Pike, W.T. (2005) Technique for eliminating notching in through-wafer etching.16th MME Micromechanics Eur. Workshop P15, 88–91Google Scholar
  10. 10.
    Zhang, X.R. and Xu, X.F. (2005) Laser bending for high-precision curvature adjustment of microcantilevers.App. Phys. Lett.86,021114CrossRefGoogle Scholar
  11. 11.
    Plaza, J.A., Zinoviev, K., Villanueva, G., Álvarez, M., Tamayo, J., Domínguez, C. and Lechuga, L.M. (2006) T-shaped microcanti-lever sensor with reduced deflection offset.Appl. Phys. Lett. 89, 094109CrossRefGoogle Scholar
  12. 12.
    Andersson, K., Areskoug, D. and Hardenborg, E. (1999) Exploring buffer space for molecular interactions.J. Molec. Recogn. 12, 310–315CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Mar Álvarez
    • 1
  • Laura G. Carrascosa
    • 1
  • Kiril Zinoviev
    • 1
  • Jose A. Plaza
    • 1
  • Laura M. Lechuga
    • 1
  1. 1.CIBER BBNInstituto de Microelectrónica de MadridMadridSpain

Personalised recommendations