Immobilization of Biomolecules onto Silica and Silica-Based Surfaces for Use in Planar Array Biosensors

  • Lisa C. Shriver-Lake
  • Paul T. Charles
  • Chris R. Taitt
Part of the Methods in Molecular Biology™ book series (MIMB, volume 504)


Several methods are described in which a biological recognition molecule — a critical element in any biosensor — is immobilized onto a silica or silica-based sensing substrate. Although several variations are described, the methods for covalent immobilization share a common theme and are generally composed of three steps: modification of the surface to add specific functional groups (using appropriate silanes or an amine or carboxyl-containing hydrogel), covalent attachment of a crosslinker through one of its reactive moieties, and finally, covalent linking of the biomolecule (recognition element) to the remaining reactive moiety of the crosslinker. One final method is presented in which the surface is modified with a highly hydrophobic silane and a glycolipid recognition element immobilized, essentially irreversibly, by hydrophobic interactions. All of the methods described have been successfully used to immobilize biological recognition molecules onto sensing surfaces, with full functionality in biosensor-binding assays.

Key words

Silanization Crosslinking Biomolecules Immunoassay Array Detection Biosensor 



The development of these methods was in part funded by the Office of Naval Research. The views expressed here are those of the authors and do not represent those of the U.S. Navy, the U.S. Department of Defense or the U.S. Government.


  1. 1.
    Bhatia, S. K., Cooney, M. J., Shriver-Lake, L. C., Fare, T. L., and Ligler, F. S. (1991) Immobilization of acetylcholinesterase on solid-surfaces — chemistry and activity studies. Sens. Actuator. B-Chem. 3, 311–317CrossRefGoogle Scholar
  2. 2.
    Duveneck, G. L., Neuschafer, D., and Ehrat, M. (1995) Process for detecting evanescently excited luminescence., Vol. International Patent Go1N 21/77, 21/64Google Scholar
  3. 3.
    Duveneck, G. L., Pawlak, M., Neuschafer, D., Bar, E., Budach, W., Pieles, U., and Ehrat, M. (1997) Novel bioaffinity sensors for trace analysis based on luminescence excitation by planar waveguides. Sens. Actuator. B-Chem. 38/39, 88–95CrossRefGoogle Scholar
  4. 4.
    Liron, Z., Tender, L. M., Golden, J. P., and Ligler, F. S. (2002) Voltage-induced inhibition of antigen-antibody binding at conducting optical waveguides. Biosens. Bioelectron. 17, 489–494CrossRefPubMedGoogle Scholar
  5. 5.
    Pawlak, M., Grell, E., Schick, E., Anselmettin, D., and Ehrat, M. (1998) Functional immobilization of biomembrane fragments on planar waveguides for the investigation of site-directed ligand binding by surface confined fluorescence. Faraday Discus. 111, 273–288CrossRefGoogle Scholar
  6. 6.
    Sapsford, K. E., Rowe Taitt, C. A., and Ligler, F. S. (2002) Planar waveguides for fluorescence biosensors. In: Optical biosensors: Present and future (Ligler, F. S. & Rowe Taitt, C. A., eds.). Elsevier, The Netherlands, pp. 95–122Google Scholar
  7. 7.
    Bernard, A., Michel, B., and Delamarche, E. (2001) Micromosaic immunoassays. Anal. Chem. 73, 8–12CrossRefPubMedGoogle Scholar
  8. 8.
    Delamarche, E., Bernard, A., Michel, B., and Biebuyek, H. (1997) Patterned delivery of immunoglobulins to surfaces using microflu-idic networks. Science 276, 779–781CrossRefPubMedGoogle Scholar
  9. 9.
    Gauglitz, G. (2005) Direct optical sensors: principles and selected applications. Anal. Bioanal. Chem. 381, 141–155CrossRefPubMedGoogle Scholar
  10. 10.
    Golden, J., Shriver-Lake, L., Sapsford, K., and Ligler, F. (2005) A “Do-it-yourself” array biosensor. Methods 37, 65–72CrossRefPubMedGoogle Scholar
  11. 11.
    Ngundi, M. M., Taitt, C. R., McMurry, S. A., Kahne, D., and Ligler, F. S. (2006) Detection of bacterial toxins with mon-osaccharide arrays. Biosens. Bioelectron. 21, 1195–1201CrossRefPubMedGoogle Scholar
  12. 12.
    Rowe, C. A., Scruggs, S. B., Feldstein, M. J., Golden, J. P., and Ligler, F. S. (1999) An array immunosensor for simultaneous detection of clinical analytes. Anal. Chem. 71, 433–439CrossRefPubMedGoogle Scholar
  13. 13.
    Sapsford, K. E., Rasooly, A., Taitt, C. R., and Ligler, F. S. (2004) Rapid detection of Campylobacter and Shigella species in food samples using an array biosensor. Anal. Chem. 76, 433–440CrossRefPubMedGoogle Scholar
  14. 14.
    Sapsford, K. E., Taitt, C. R., Loo, N., and Ligler, F. S. (2005) Biosensor detection of botulinum toxoid A and staphylococcal enterotoxin B in food. Appl. Environ. Micro-biol. 71, 5590–5592CrossRefGoogle Scholar
  15. 15.
    Taitt, C. R., Anderson, G. P. , Lingerfelt, B. M., Feldstein, M. J., and Ligler, F. S. (2002) Nine-analyte detection using an array-based biosensor. Anal. Chem. 74, 6114–6120CrossRefPubMedGoogle Scholar
  16. 16.
    Tschmelak, J., Kumpf, M., Proll, G., and Gauglitz, G. (2004) Biosensor for seven sul-phonamides in drinking, ground, and surface water with difficult matrices. Anal. Lett. 37, 1701–1718CrossRefGoogle Scholar
  17. 17.
    Tschmelak, J., Proll, G., and Gauglitz, G. (2004) Verification of performance with the automated direct optical TIRF immunosen-sor (River Analyser) in single and multi-ana-lyte assays with real water samples. Biosens. Bioelectron. 20, 743–752CrossRefPubMedGoogle Scholar
  18. 18.
    Moreno-Bondi, M. C., Taitt, C. R., Shriver-Lake, L. C., and Ligler, F. S. (2006) Multiplexed measurement of serum antibodies using an array biosensor. Biosens. Bioelectron. 21, 1880–1886CrossRefGoogle Scholar
  19. 19.
    Ngundi, M. M., Shriver-Lake, L. C., Moore, M. H., Ligler, F. S., and Taitt, C. R. (2006) Multiplexed detection of mycotoxins in foods with a regenerable array. J. Food Prot. 69, 3047–3051PubMedGoogle Scholar
  20. 20.
    Martin, B. D., Lindhardt, R. J., and Dordick, J. S. (1998) Highly swelling hydrogels from ordered galactose-based polyacrylates. Bio-materials 19, 69–76Google Scholar
  21. 21.
    Cras, J. J., Rowe-Taitt, C. A., Nivens, D. A., and Ligler, F. S. (1999) Comparison of chemical cleaning methods of glass in preparation for silanization. Biosens. Bioelectron. 14, 683–688CrossRefGoogle Scholar
  22. 22.
    Shriver-Lake, L. C. (1998) Silane-modified surfaces for biomaterial immobilization. In: Immobilized biomolecules in analysis: A practical approach (Cass, T. & Ligler, F. S., eds.). Oxford University Press, OxfordGoogle Scholar
  23. 23.
    Golden, J. P. , Taitt, C. R., Shriver-Lake, L. C., Shubin, Y. S., and Ligler, F. S. (2005) A portable automated multianalyte biosensor. Talanta 65, 1078–1085CrossRefPubMedGoogle Scholar
  24. 24.
    Charles, P. T., Goldman, E. R., Rangasammy, J. G., Schauer, C. L., Chen, M.-S., and Taitt, C. R. (2004) Fabrication and characterization of 3D hydrogel microarrays to measure anti-genicity and antibody functionality for biosensor applications. Biosens. Bioelectron. 20, 753–764CrossRefPubMedGoogle Scholar
  25. 25.
    Ngundi, M. M., Kulagina, N. V., Anderson, G. P., and Taitt, C. R. (2006) Nonantibody-based recognition: alternative molecules for detection of pathogens. Exp. Rev. Proteomics 3, 511–524CrossRefGoogle Scholar
  26. 26.
    Rowe-Taitt, C. A., Cras, J. J., Patterson, C. H., Golden, J. P., and Ligler, F. S. (2000) A ganglioside-based assay for cholera toxin using an array biosensor. Anal. Biochem. 281, 123–133CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Lisa C. Shriver-Lake
    • 1
  • Paul T. Charles
    • 1
  • Chris R. Taitt
    • 1
  1. 1.Center for Bio/Molecular Science & EngineeringUS Naval Research LaboratoryWashingtonUSA

Personalised recommendations