Piezoelectric Biosensors for Aptamer—Protein Interaction

  • Sara Tombelli
  • Alessandra Bini
  • Maria Minunni
  • Marco Mascini
Part of the Methods in Molecular Biology™ book series (MIMB, volume 504)


Aptamers can be considered as a valid alternative to antibodies or other biomimetic receptors for the development of biosensors and other analytical methods. The production of aptamers is commonly performed by the SELEX (Systematic Evolution of Ligands by Exponential Enrichment) process, which, starting from large libraries of oligonucleotides, allows the isolation of large amounts of functional nucleic acids by an iterative process of in vitro selection and subsequent amplification through polymerase chain reaction. Aptamers are suitable for applications based on molecular recognition as analytical, diagnostic, and therapeutic tools.

The use of aptamers as biorecognition element in piezoelectric biosensors will be here reported with particular application to the detection of thrombin.


Biosensor DNA Aptamers Thrombin Quartz crystal microbalance 


  1. 1.
    Tombelli, S., Minunni, M., Mascini, M. (2005). Analytical applications of aptamers. Biosens. Bioelectron. 20, 2424–2434CrossRefPubMedGoogle Scholar
  2. 2.
    Tuerk, C., Gold, L. (1990). Systematic evolution of ligands by exponential enrichment. Science 249, 505–510CrossRefPubMedGoogle Scholar
  3. 3.
    Ellington, A.D., Szostak, J.W. (1990). In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822CrossRefPubMedGoogle Scholar
  4. 4.
    Luzi, E., Minunni, M., Tombelli, S., Mascini, M. (2003). New trends in affinity sensing: aptamers for ligand binding. TrAC. Trends Analyt. Chem. 22, 810–818CrossRefGoogle Scholar
  5. 5.
    O'Sullivan, C.K. (2002). Aptasensors-the future of biosensing? Anal. Bioanal. Chem. 372, 44–48CrossRefPubMedGoogle Scholar
  6. 6.
    Ellington, A.D., Szostak, J.W. (1992). Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 355, 850–852CrossRefPubMedGoogle Scholar
  7. 7.
    Geiger, A., Burgstaller, P., Von der Eltz, H., Roeder, A., Famulok, M. (1996). RNA aptam-ers that bind L-ariginine with sub-micromolar dissociation constants and high enantioselec-tivity. Nucleic Acids Res. 24, 1029–1036CrossRefPubMedGoogle Scholar
  8. 8.
    Tereshko, V., Skripkin, E., Patel, D.J. (2003). Encapsulating streptomycin within a small 40-mer RNA. Chem. Biol. 10, 175–187CrossRefPubMedGoogle Scholar
  9. 9.
    Baskerville, S., Zapp, M., Ellington, A.D. (1999). Anti-Rex aptamers as mimics of the Rex-binding element. J. Virol. 73, 4962–4971PubMedGoogle Scholar
  10. 10.
    Wen, J.D., Gray, C.W., Gray, D.M. (2001). SELEX selection of high-affinity oligonucle-otides for bacteriophage Ff gene 5 protein. Biochemistry 40, 9300–9310CrossRefPubMedGoogle Scholar
  11. 11.
    Wilson, C., Nix, J., Szostak, J.W. (1998). Functional requirements for specific ligand recognition by a biotin-binding RNA pseu-doknot. Biochemistry 37, 14410–14419CrossRefPubMedGoogle Scholar
  12. 12.
    Herr, J.K., Smith, J.E., Medley, C.D., Shang-guan, D., Tan, W. (2006). Aptamer-conju-gated nanoparticles for selective collection and detection of cancer cells. Anal. Chem. 78, 2918–2924CrossRefPubMedGoogle Scholar
  13. 13.
    Homann, M., Göringer, H.U. (1999). Combinatorial selection of high affinity RNA ligands to live African trypanosomes. Nucleic Acids Res. 27, 2006–2014CrossRefPubMedGoogle Scholar
  14. 14.
    Kotia, R.B., Li, L., McGown, L.B. (2000). Separation of nontarget compounds by DNA aptamers. Anal. Chem. 72, 827–831CrossRefPubMedGoogle Scholar
  15. 15.
    Cole, J.R., Dick, L.W., Jr., Morgan, E.J., McGown, L.B. (2007). Affinity capture and detection of immunoglobulin E in human serum using an aptamer-modified surface in matrix-assisted laser desorption/ionization mass spec-trometry. Anal. Chem. 79, 273–279CrossRefPubMedGoogle Scholar
  16. 16.
    Hamaguchi, N., Ellington, A., Stanton, M. (2001). Aptamer beacons for the direct detection of proteins. Anal. Biochem. 294, 126– 131CrossRefPubMedGoogle Scholar
  17. 17.
    Li, J.J., Fang, X., Tan, W. (2002). Molecular aptamer beacons for real-time protein recognition. Biochem. Biophys. Res. Commun. 292, 31–40CrossRefPubMedGoogle Scholar
  18. 18.
    Macaya, P., Schultze, F.W., Smith, J.A., Roe, F.J. (1993). Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution. Proc. Natl. Acad. Sci. U.S.A 90, 3745–3749CrossRefPubMedGoogle Scholar
  19. 19.
    Smirnov, I., Shafer, R.H. (2000). Effect of loop sequence and size on DNA aptamer stability. Biochemistry 39, 1462–1468CrossRefPubMedGoogle Scholar
  20. 20.
    Paborsky, L.R., McCurdy, S.N., Griffin, L.C., Toole, J.J., Leung, L.L. (1993). The single-stranded DNA aptamer-binding site of human thrombin. J. Biol. Chem. 268, 20808–20811PubMedGoogle Scholar
  21. 21.
    Baldrich, E., Restrepo, A., O'Sullivan, C.K. (2004). Aptasensor development: elucidation of critical parameters for optimal aptamer performance. Anal. Chem. 76, 7053–7063CrossRefPubMedGoogle Scholar
  22. 22.
    Radi, A.E., Acero Sanchez, J.L., Baldrich, E., O'Sullivan, C.K. (2006). Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor. J. Am. Chem. Soc. 128, 117–124CrossRefPubMedGoogle Scholar
  23. 23.
    Gronewold, T.M.A., Glass, S., Quandt, E., Famulok, M. (2005). Monitoring complex formation in the blood coagulation cascade using aptamer-coated SAW sensors. Biosens. Bioelectron. 20, 2044–2052CrossRefPubMedGoogle Scholar
  24. 24.
    Mir, M., Vreeke, M., Katakis, I. (2006). Different strategies to develop an electrochemical thrombin aptasensor. Electrochem. Commun. 8, 505–511CrossRefGoogle Scholar
  25. 25.
    Zhang, H., Wang, Z., Li, X.F., Le, X.C. (2006). Ultrasensitive detection of proteins by amplification of affinity aptamers. Angew. Chem. Int. Ed. 45, 1576 –1580CrossRefGoogle Scholar
  26. 26.
    Centi, S., Tombelli, S., Minunni, M., Mas-cini, M. (2007). Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads. Anal. Chem. 79, 1466–1473CrossRefPubMedGoogle Scholar
  27. 27.
    Bini, A., Minunni, M., Tombelli, S., Centi, S., Mascini, M. (2007). Analytical performances of aptamer-based sensing for thrombin detection. Anal. Chem. 79, 3016–3019CrossRefPubMedGoogle Scholar
  28. 28.
    Holland, C.A., Henry, A.T., Whinna, H.C., Church, F.C. (2000). Effect of oligodeoxy-nucleotide thrombin aptamer on thrombin inhibition by heparin cofactor II and anti-thrombin. FEBS Lett. 484, 87–91CrossRefPubMedGoogle Scholar
  29. 29.
    Stubbs, M.T., Bode, W. (1993). A player of many parts: the spotlight falls on thrombin's structure. Thrombosis Res. 69, 1–58CrossRefGoogle Scholar
  30. 30.
    Shuman, M.A., Majerus, P.W. (1976). The measurement of thrombin in clotting blood by radioimmunoassay. J. Clin. Invest. 58, 1249–1258CrossRefPubMedGoogle Scholar
  31. 31.
    Curie, J., Curie, P. (1880). An oscillating quartz crystal mass detector. Rendu 91, 294–297Google Scholar
  32. 32.
    Janshoff, A., Steinem, C. (2001). Quartz crystal microbalance for bioanalytical applications. Sensor Update 9, 313–354CrossRefGoogle Scholar
  33. 33.
    Bruckenstein, S., Shay, M. (1985). Experimental aspects of the use of quartz crystal microbalance solution. Electrochim. Acta 30, 1295–1300Google Scholar
  34. 34.
    Sauerbrey, G. (1959). The use of quartz oscillators for weighing thin layers and for micro-weighing. Z. Physik. 155, 206–222CrossRefGoogle Scholar
  35. 35.
    Hillier, A.C., Ward, M.D. (1992). Scanning electrochemical mass sensitivity mapping of the quartz crystal. Anal. Chem. 64, 2539–2554CrossRefGoogle Scholar
  36. 36.
    Chang, S., Muramatsu, H., Nakamura, C., Miyake, J. (2000). The principle and application of piezoelectric crystal sensors. Mater. Sci. Eng. C 12, 111–123CrossRefGoogle Scholar
  37. 37.
    O'Sullivan, C.K., Guilbault, G.G. (1999). Commercial quartz crystal. Microbalances. Biosens. Bioelectron. 14, 663–670CrossRefGoogle Scholar
  38. 38.
    Kim, N., Park, I.S., Kim, D.K. (2004). Characteristics of a label-free piezoelectric immu-nosensor detecting Pseudomonas aeruginosa. Sens. Actuators B Chem. 100, 432–438CrossRefGoogle Scholar
  39. 39.
    Mannelli, I., Minunni, M., Tombelli, S., Mas-cini, M. (2003). Bulk acoustic wave (BAW) affinity biosensor for genetically modified organisms (GMOs) detection. IEEE Sens. J. 3, 369–375CrossRefGoogle Scholar
  40. 40.
    Skládal, P., dos Santos Riccardi, C., Yamanaka, H., Inácio da Costa, P. (2004). Piezoelectric biosensors for real-time monitoring of hybridization and detection of hepatitis C virus. J. Virol. Methods 117, 145–151CrossRefPubMedGoogle Scholar
  41. 41.
    Dell'Atti, D., Tombelli, S., Minunni, M., Mas-cini, M. (2006). Detection of clinically relevant point mutations by a novel piezoelectric biosensor. Biosens. Bioelectron. 21, 1876– 1879CrossRefPubMedGoogle Scholar
  42. 42.
    Bock, L.C., Griffin, L.C., Latham, J.A., Ver-maas, E.H., Toole, J.J. (1992). Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355, 564–566CrossRefPubMedGoogle Scholar
  43. 43.
    Tombelli, S., Mascini, M., Braccini, L., Ani-chini, M., Turner, A.P.F. (2000). Coupling of a DNA piezoelectric biosensor and polymer- ase chain reaction to detect apolipoprotein E polymorphisms. Biosens. Bioelectron. 15, 363–370CrossRefPubMedGoogle Scholar
  44. 44.
    Ducongè, F., Di Primo, C., Toulmè, J.J. (2000). Is a closing GA pair a rule for stable loop-loop DNA complexes? J. Biol. Chem. 275, 21287–21294CrossRefPubMedGoogle Scholar
  45. 45.
    Tombelli, S., Minunni, M., Mascini, M. (2005) Analytical applications of aptamers. Biosens. Bioelectron. 20, 2424–2434.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Sara Tombelli
    • 1
  • Alessandra Bini
    • 1
  • Maria Minunni
    • 1
  • Marco Mascini
    • 1
  1. 1.Dipartimento di ChimicaUniversità degli Studi di FirenzeSesto FiorentinoItaly

Personalised recommendations