Advertisement

Synthesis of a Virus Electrode for Measurement of Prostate Specific Membrane Antigen

  • Juan E. Diaz
  • Li-Mei C. Yang
  • Jorge A. Lamboy
  • Reginald M. Penner
  • Gregory A. Weiss
Part of the Methods in Molecular Biology™ book series (MIMB, volume 504)

Summary

Though relatively unexploited in biosensor applications, phage display technology can provide versatile recognition scaffolds for detection of cancer markers and other analytes. This chapter details protocols for covalent attachment of viruses directly to electrodes for reagent-free detection of analytes in real-time. Customization of binding specificity leverages selections with large phage display libraries prior to covalent attachment of the selected virus to the electrode. The methods described here utilize electrochemical impedance spectroscopy (EIS) to detect molecular recognition between M13 phage bound to a Au electrode and the following analytes: prostate specific membrane antigen (PSMA), positive and negative control antibodies (p-Ab and n-Ab, respectively). Because of a thick layer built on the Au electrode, the real impedance (Z re) increases reliably with S/N ratios upon noncovalent binding to PSMA (~14) and p-Ab (~20).

Keywords

Biosensor Bacteriophage Surface modification Electrochemical impedance Electrode 

Notes

Acknowledgments

R.M.P. acknowledges funding support from the National Science Foundation (grants CHE-0111557 and CHE-0641169) and the Petroleum Research Fund of the American Chemical Society (grant 40714-AC5). G.A.W. acknowledges funding support from the NSF (grant EF-0404057). J.E.D. and J.A.L. thank the American Chemical Society (Division of Organic Chemistry) and the NIH NIGMS (Minority Supplemental Award) respectively for graduate fellowships.

References

  1. 1.
    Smith, G. P. (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 228, 1315–1317CrossRefPubMedGoogle Scholar
  2. 2.
    Kehoe, J. W. and Kay, B. K. (2005) Filamentous phage display in the new millennium. Chem. Rev. 105, 4056–4072CrossRefPubMedGoogle Scholar
  3. 3.
    Diaz, J. E., Howard, B. E., Neubauer, M. S., Olszewski, A., and Weiss, G. A. (2003) Exploring biochemistry and cellular biology with protein libraries. Curr. Issues Mol. Biol. 5, 129–145PubMedGoogle Scholar
  4. 4.
    Sidhu, S. S., Lowman, H. B., Cunningham, B. C., and Wells, J. A. (2000) Phage display for selection of novel binding peptides. Methods Enzymol. 328, 333–363CrossRefPubMedGoogle Scholar
  5. 5.
    Sidhu, S. S. (2000) Phage display in pharmaceutical biotechnology. Curr. Opin. Biotech-nol. 11, 610–616CrossRefGoogle Scholar
  6. 6.
    Scott, J. K. and Smith, G. P. (1990) Searching for peptide ligands with an epitope library. Science. 249, 386–390CrossRefPubMedGoogle Scholar
  7. 7.
    Devlin, J. J., Panganiban, L. C., and Devlin, P. E. (1990) Random peptide libraries: a source of specific protein binding molecules. Science. 249, 404–406CrossRefPubMedGoogle Scholar
  8. 8.
    Cwirla, S. E., Peters, E. A., Barret, R. W., and Dower, W. J. (1990) Peptides on phage: a vast library of peptides for identifying ligands. Proc. Natl Acad. Sci. U.S.A. 87, 6378–6382CrossRefPubMedGoogle Scholar
  9. 9.
    Sidhu, S. S. and Weiss, G. A. (2004) Constructing phage display libraries by oligo-nucleotide-directed mutagenesis, in Phage Display: A Practical Approach (Lowman, H. B. and Clackson, T., eds.), Oxford University Press, Oxford, UK, pp. 27–41Google Scholar
  10. 10.
    Hengerer, A., Decker, J., Prohaska, E., Hauck, S., Köβlinger, C., and Wolf, H. (1999) Quartz crystal microbalance (QCM) as a device for the screening of phage libraries. Biosens. Bioelectron. 14, 139–144CrossRefPubMedGoogle Scholar
  11. 11.
    Dultsev, F. N., Speight, R. E., Fiorini, M. T., Blackburn, J. M., Abell, C., Ostanin, V. P., and Klenerman, D. (2001) Direct and quantitative detection of bacteriophage by “hearing” surface detachment using a quartz crystal microbalance. Anal. Chem. 73, 3935–3939CrossRefPubMedGoogle Scholar
  12. 12.
    Hengerer, A., Kösslinger, C., Decker, J., Hauck, S., Queitsch, I., Wolf, H., and Dübel, S. (1999) Determination of phage antibody affinities to antigen by a microbalance sensor system. BioTechniques. 26, 956–964PubMedGoogle Scholar
  13. 13.
    Åström, E. and Ohlson, S. (2006) Detection of weakly interacting anti-carbohydrate scFv phages using surface plasmon resonance. J. Mol. Recognit. 19, 282–286CrossRefPubMedGoogle Scholar
  14. 14.
    Goldman, E. R., Pazirandeh, M. P., Mauro, J. M., King, K. D., Frey, J. C., Anderson, G. P. (2000) Phage-displayed peptides as biosensor reagents. J. Mol. Recognit. 13, 382–387CrossRefPubMedGoogle Scholar
  15. 15.
    Kelly, K. A., Waterman, P., and Weissleder, R. (2006) In vivo imaging of molecularly targeted phage. Neoplasia. 8, 1011–1018CrossRefPubMedGoogle Scholar
  16. 16.
    Yang, L. -M. C., Tam, P. Y., Murray, B. J., McIntire, T. M., Overstreet, C. M., Weiss, G. A., and Penner, R. M. (2006) Virus electrodes for universal biodetection. Anal. Chem. 78, 3265–3270CrossRefPubMedGoogle Scholar
  17. 17.
    Sadik, O. A., Xu, H., Gheorghiu, E., Andreescu, D., Balut, C., Gheorghiu, M., and Bratu, D. (2002) Differential impedance spectroscopy for monitoring protein immo-bilization and antibody-antigen reactions. Anal. Chem. 74, 3142–3150CrossRefPubMedGoogle Scholar
  18. 18.
    Tang, H., Chen, J., Nie, L., Kuang, Y., Yao, S. (2007) A label-free electrochemical immunoassay for carcinoembryonic antigen (CEA) based on gold nanoparticles (AuNPs) and nonconductive polymer film. Biosens. Bioelectron. 22, 1061–1067CrossRefPubMedGoogle Scholar
  19. 19.
    Barton, A. C., Collyer, S. D., Davis, F., Gor-nall, D. D., Law, K. A., Lawrence, E. C. D., Mills, D. W., Myler, S., Pritchard, J. A., Thompson, M., and Higson, S. P. (2004) Sonochemically fabricated microelectrode arrays for biosensors offering widespread applicability. Part I Biosens. Bioelectron. 20, 328–337CrossRefPubMedGoogle Scholar
  20. 20.
    Gill, A., Farace, G., Lillie, G., and Vadgama, P. (2002) Strategic issues in reliable sensing. Bioelectrochemistry. 55, 123–125CrossRefPubMedGoogle Scholar
  21. 21.
    He, P., Xu, Y., and Fang, Y. (2005) A review: Electrochemical DNA biosensors for sequence recognition. Anal. Lett. 38, 2597–2623CrossRefGoogle Scholar
  22. 22.
    K'Owino, I. O., and Sadik, O. A. (2005) Impedance spectroscopy: A powerful tool for rapid biomolecular screening and cell culture monitoring. Electroanalysis. 17, 2101–2113CrossRefGoogle Scholar
  23. 23.
    Cui, X. Q., Pei, R. J., Wang, X. Z., Yang, F., Ma, Y., Dong, S. J., and Yang, X. R. (2003) Layer-by-layer assembly of multilayer films composed of avidin and biotin-labeled antibody for immunosensing. Biosens. Bioelec-tron. 18, 59–67CrossRefGoogle Scholar
  24. 24.
    Ruan, C., Yang, L., and Li, Y. (2002) Immu-nobiosensor chips for detection of Escherichia coli O157: H7 using electrochemical impedance spectroscopy. Anal. Chem. 74, 4814– 4820CrossRefPubMedGoogle Scholar
  25. 25.
    Wang, M. Wang, L., Wang, G., Ji, X., Bai, Y., Li, T., Gong, S., and Li, J. (2004) Application of impedance spectroscopy for monitoring colloid Au-enhanced antibody immobilization and antibody-antigen reactions. Biosens. Bio-electron. 19, 575–582Google Scholar
  26. 26.
    Wu, Z., Tang, J., Cheng, Z., Yang, X., and Wang, E. (2000) Ion channel behavior of supported bilayer lipid membranes on a glassy carbon electrode. Anal. Chem. 72, 6030–6033CrossRefPubMedGoogle Scholar
  27. 27.
    Ye, J. S., Ottova, A., Tien, H. T., and Sheu, F. S. (2003) Nanostructured platinum-lipid bilayer composite as biosensor. Bioelectro-chemistry. 59, 65–72CrossRefGoogle Scholar
  28. 28.
    Lie, L. H., Patole, S. N., Pike, A. R., Ryder, L. C., Connolly, B. A., Ward, A. D., Tuite, E. M., Houlton, A., and Horrocks, B. R. (2004) Immobilisation and synthesis of DNA on Si(111), nanocrystalline porous silicon and silicon nanoparticles. Faraday Discusss. 125, 235–249CrossRefGoogle Scholar
  29. 29.
    Su, L., Sen, D., and Yu, H. Z. (2006) Vol-tammetric study of the ion-exchange binding of non-electroactive metal cations to DNA-modified surfaces. Analyst 131, 317–322CrossRefPubMedGoogle Scholar
  30. 30.
    Chen, H., Jiang, J. H., Huang, Y., Deng, T., Li, J. S., Shen, G. L., and Yu, R. Q. (2006) An electrochemical impedance immunosensor with signal amplification based on Au-colloid labeled antibody complex. Sens. Actuators B 117, 211–218CrossRefGoogle Scholar
  31. 31.
    Wang, J. B., Profitt, J. A., Pugia, M. J., and Suni, II (2006) Au nanoparticle conjugation for impedance and capacitance signal amplification in biosensors. Anal. Chem. 78, 1769–1773CrossRefPubMedGoogle Scholar
  32. 32.
    Alfonta, L., Singh, A. K., and Willner, I. (2001) Liposomes labeled with biotin and horseradish peroxidase: A probe for the enhanced amplification of antigen-antibody or oligonucleotide-DNA sensing processes by the precipitation of an insoluble product on electrodes. Anal. Chem. 73, 91–102CrossRefPubMedGoogle Scholar
  33. 33.
    Patolsky, F., Zayats, M., Katz, E., and Will-ner, I. (1999) Precipitation of an insoluble product on enzyme monolayer electrodes for biosensor applications: Characterization by faradaic impedance spectroscopy, cyclic vol-tammetry, and microgravimetric quartz crystal microbalance analyses. Anal. Chem. 71, 3171–3180CrossRefPubMedGoogle Scholar
  34. 34.
    Ionescu-Zanetti, C., Nevill, J. T., Di Carlo, D., Jeong, K. H., and Lee, L. P. (2006) Nanogap capacitors: Sensitivity to sample permittivity changes. J. Appl. Phys. 99, 024305CrossRefGoogle Scholar
  35. 35.
    Van Gerwen, P., Laureyn, W., Laureys, W., Huyberechts, G., De Beeck, M. O., Baert, K., Suls, J., Sansen, W., Jacobs, P., Hermans, L., and Mertens, R. (1998) Nanoscaled inter-digitated electrode arrays for biochemical sensors. Sens. Actuators B 49, 73–80CrossRefGoogle Scholar
  36. 36.
    Pangborn, A. B., Giardello, M. A., Grubbs, R. H., Rosen, R. K., and Timmers, F. J. (1996) Safe and convenient procedure for solvent purification. Organometallics 15, 1518–1520CrossRefGoogle Scholar
  37. 37.
    Kunkel, T. A., Roberts, J. D., and Zakour, R. A. (1987) Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 154, 367–382CrossRefPubMedGoogle Scholar
  38. 38.
    Davis, M. I., Bennett, M. J., Thomas, L. M., and Bjorkman, P. J. (2005) Crystal structure of prostate-specific membrane antigen, a tumor marker and peptidase. Proc. Natl. Acad. Sci. U.S.A. 102, 5981–5986CrossRefPubMedGoogle Scholar
  39. 39.
    Blonder, R., Willner, I., and Bückmann, A. F. (1998) Reconstitution of apo-glucose oxidase on nitrospiropyran and FAD mixed monolay-ers on gold electrodes: Photostimulation of bioelectrocatalytic features of the biocatalyst. J. Am. Chem. Soc. 120, 9335–9341CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Juan E. Diaz
    • 1
  • Li-Mei C. Yang
    • 1
  • Jorge A. Lamboy
    • 1
  • Reginald M. Penner
    • 1
  • Gregory A. Weiss
    • 1
  1. 1.Department of ChemistryUniversity of California, IrvineIrvineUSA

Personalised recommendations