Liposome-Enhanced Lateral-Flow Assays for the Sandwich-Hybridization Detection of RNA

  • Katie A. Edwards
  • Antje J. Baeumner
Part of the Methods in Molecular Biology™ book series (MIMB, volume 504)


Clinical and environmental analyses frequently necessitate rapid, simple, and inexpensive point-of-care or field tests. These semiquantitative tests may be later followed up by confirmatory laboratory-based assays, but can provide an initial scenario assessment important for resource mobilization and threat confinement. Lateral-flow assays (LFAs) and dip-stick assays, which are typically antibody-based and yield a visually detectable signal, provide an assay format suiting these applications extremely well. Signal generation is commonly obtained through the use of colloidal gold or latex beads, which yield a colored band either directly proportional or inversely proportional to the concentration of the analyte of interest. Here, dye-encapsulating liposomes as an alternative are discussed. The LFA biosensors described in this chapter rely on the sandwich-hybridization of a nucleic acid sequence-based amplified (NASBA) mRNA target between a membrane immobilized capture probe and a visible dye (sulforhodamine B)-encapsulating liposome conjugated reporter probe. Although the methodology of this chapter is focused on LFAs for the detection of RNA through sandwich hybridization, the information within can be readily adapted for sandwich and competitive immunoassays. Included are an introduction and application notes toward this end. These include notes ranging from the detection of nonamplified RNA and single-stranded DNA, conjugation protocols for antibodies and other proteins to liposomes, and universal assay formats.


Lateral-flow assay Liposome RNA DNA 



The authors gratefully acknowledge the review of this chapter by Kit Meyers and Barbara Leonard.


  1. 1.
    Helbig, J. H., Luck, P. C., Kunz, B., and Bubert, A. (2006) Evaluation of the Duopath Legionella lateral flow assay for identification of Legionella pneumophila and Legionella species culture isolates. Appl Environ Micro-biol. 72, 4489–4491CrossRefGoogle Scholar
  2. 2.
    Koide, M., Haranaga, S., Higa, F., Tateyama, M., Yamane, N., and Fujita, J. (2007) Comparative evaluation of Duopath Legionella lateral flow assay against the conventional culture method using Legionella pneumophila and Legionella anisa strains. Jpn J Infect Dis. 60, 214–216PubMedGoogle Scholar
  3. 3.
  4. 4.
    Johnston, S. P., Ballard, M. M., Beach, M. J., Causer, L., and Wilkins, P. P. (2003) Evaluation of three commercial assays for detection of Giardia and Cryptosporidium organisms in fecal specimens. J Clin Microbiol. 41, 623–626CrossRefPubMedGoogle Scholar
  5. 5.
    Ketema, F., Zeh, C., Edelman, D. C., Saville, R., and Constantine, N. T. (2001) Assessment of the performance of a rapid, lateral flow assay for the detection of antibodies to HIV. J Acquir Immune Defic Syndr. 27, 63–70PubMedGoogle Scholar
  6. 6.
    Cazacu, A. C., Demmler, G. J., Neuman, M. A., Forbes, B. A., Chung, S. Y., Greer, J., Alvarez, A. E., Williams, R., and Bartholoma, N. Y. (2004) Comparison of a new lateral-flow chromatographic membrane immunoassay to viral culture for rapid detection and differentiation of influenza A and B viruses in respiratory specimens. J Clin Microbiol. 42, 3661–3664CrossRefPubMedGoogle Scholar
  7. 7.
    Mokkapati, V. K., Sam Niedbala, R., Kardos, K., Perez, R. J., Guo, M., Tanke, H. J., and Corstjens, P. L. (2007) Evaluation of UPlink-RSV: prototype rapid antigen test for detection of respiratory syncytial virus infection. Ann N Y Acad Sci. 1098, 476–485CrossRefPubMedGoogle Scholar
  8. 8.
    Slinger, R., Milk, R., Gaboury, I., and Diaz-Mitoma, F. (2004) Evaluation of the QuickLab RSV test, a new rapid lateral-flow immunoassay for detection of respiratory syncytial virus antigen. J Clin Microbiol. 42, 3731–3733CrossRefPubMedGoogle Scholar
  9. 9.
    van Hengel, A. J., Capelletti, C., Brohee, M., and Anklam, E. (2006) Validation of two commercial lateral flow devices for the detection of peanut proteins in cookies: interlaboratory study. J AOAC Int. 89, 462–468PubMedGoogle Scholar
  10. 10.
  11. 11.
  12. 12.
    Edwards, K. A., Curtis, K. L., Sailor, J., Bae-umner, A. (2008) Universal liposomes: Preparation and usage for the detection of mRNA. Anal Bioanal Chem.391, 1689–1702, Epub 2008 March 8CrossRefPubMedGoogle Scholar
  13. 13.
    Jung, K., Zachow, J., Lein, M., Brux, B., Sinha, P., Lenk, S., Schnorr, D., and Loen-ing, S. A. (1999) Rapid detection of elevated prostate-specific antigen levels in blood: performance of various membrane strip tests compared. Urology. 53, 155–160CrossRefPubMedGoogle Scholar
  14. 14.
  15. 15.
  16. 16.
    Sharma, S. K., Eblen, B. S., Bull, R. L., Burr, D. H., and Whiting, R. C. (2005) Evaluation of lateral-flow clostridium botulinum neuro-toxin detection kits for food analysis. Appl Environ Microbiol. 71, 3935–3941CrossRefPubMedGoogle Scholar
  17. 17.
    Park, C. H., Kim, H. J., Hixon, D. L., and Bubert, A. (2003) Evaluation of the duopath verotoxin test for detection of shiga toxins in cultures of human stools. J Clin Microbiol. 41, 2650–2653CrossRefPubMedGoogle Scholar
  18. 18.
    Capps, K. L., McLaughlin, E. M., Murray, A. W. A., Aldus, C. F., Wyatt, G. M., Peck, M. W., Amerongen, A., Ariens, R. M. C., Wich-ers, J. H., Baylis, C. L., Wareing, D. R. A., and Bolton, F. J. (2004) Validation of three rapid screening methods for detection of verotoxin-producing Escherichia coli in foods: Interlabo-ratory study. J Aoac Int. 87, 68–77PubMedGoogle Scholar
  19. 19.
    Smits, H. L., Eapen, C. K., Sugathan, S., Kuria-kose, M., Gasem, M. H., Yersin, C., Sasaki, D., Pujianto, B., Vestering, M., Abdoel, T. H., and Gussenhoven, G. C. (2001) Lateral-flow assay for rapid serodiagnosis of human leptospirosis. Clin Diagn Lab Immunol. 8, 166–169PubMedGoogle Scholar
  20. 20.
    Kassler, W. J., Dillon, B. A., Haley, C., Jones, W. K., and Goldman, A. (1997) On-site, rapid HIV testing with same-day results and counseling. Aids. 11, 1045–1051CrossRefPubMedGoogle Scholar
  21. 21.
    Prevention, U. S. C. f. D. C. a. (1996) in “MMWR Morb Mortal Wkly Rep”, Vol. 45, pp. 468–80Google Scholar
  22. 22.
    Baeumner, A. J., Jones, C., Wong, C. Y., and Price, A. (2004) A generic sandwich-type biosensor with nanomolar detection limits. Anal Bioanal Chem. 378, 1587–1593CrossRefPubMedGoogle Scholar
  23. 23.
    Baeumner, A. J., Pretz, J., and Fang, S. (2004) A universal nucleic acid sequence biosensor with nanomolar detection limits. Anal Chem. 76, 888–894CrossRefPubMedGoogle Scholar
  24. 24.
    Seal, J., Braven, H., Wallace, P. (2006) Point-of-care nucleic acid lateral-flow tests. IVD Technol.Google Scholar
  25. 25.
    Rule, G. S., Montagna, R. A., and Durst, R. A. (1996) Rapid method for visual identification of specific DNA sequences based on DNA-tagged liposomes. Clin Chem. 42, 1206–1209PubMedGoogle Scholar
  26. 26.
    Corstjens, P. , Zuiderwijk, M., Brink, A., Li, S., Feindt, H., Niedbala, R. S., and Tanke, H. (2001) Use of up-converting phosphor reporters in lateral-flow assays to detect specific nucleic acid sequences: a rapid, sensitive DNA test to identify human papillomavirus type 16 infection. Clin Chem. 47, 1885–1893PubMedGoogle Scholar
  27. 27.
    Corstjens, P. L., Zuiderwijk, M., Nilsson, M., Feindt, H., Sam Niedbala, R., and Tanke, H. J. (2003) Lateral-flow and up-converting phosphor reporters to detect single-stranded nucleic acids in a sandwich-hybridization assay. Anal Biochem. 312, 191–200CrossRefPubMedGoogle Scholar
  28. 28.
    Carney, J., Braven, H., Seal, J., Whitworth, E. (2006) Present and future applications of gold in rapid assays. IVD Technol. 12, 41–49Google Scholar
  29. 29.
    Oku, Y., Kamiya, K., Kamiya, H., Shibahara, Y., Ii, T., and Uesaka, Y. (2001) Development of oligonucleotide lateral-flow immunoassay for multi-parameter detection. J Immunol Methods. 258, 73–84CrossRefPubMedGoogle Scholar
  30. 30.
    Zaytseva, N. V., Montagna, R. A., Lee, E. M., and Baeumner, A. J. (2004) Multi-analyte single-membrane biosensor for the serotype-specific detection of Dengue virus. Anal Bio-anal Chem. 380, 46–53Google Scholar
  31. 31.
    Corstjens, P. L., Chen, Z., Zuiderwijk, M., Bau, H. H., Abrams, W. R., Malamud, D., Sam Niedbala, R., and Tanke, H. J. (2007) Rapid assay format for multiplex detection of humoral immune responses to infectious disease pathogens (HIV, HCV, and TB). Ann N Y Acad Sci. 1098, 437–445CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang, C., Zhang, Y., and Wang, S. (2006) Development of multianalyte flow-through and lateral-flow assays using gold particles and horseradish peroxidase as tracers for the rapid determination of carbaryl and endosulfan in agricultural products. J Agric Food Chem. 54, 2502–2507CrossRefPubMedGoogle Scholar
  33. 33.
    Aldus, C. F., Van Amerongen, A., Ariens, R. M., Peck, M. W., Wichers, J. H., and Wyatt, G. M. (2003) Principles of some novel rapid dipstick methods for detection and characterization of verotoxigenic Escherichia coli. J Appl Microbiol. 95, 380–389CrossRefPubMedGoogle Scholar
  34. 34.
    O'Farrell, B., Bauer, J. (2006) Developing highly sensitive, more-reproducible lateral-flow assays Part 1: New approaches to old problems. IVD Technol.Google Scholar
  35. 35.
    Hans, H. B., Karl Pflanz, E. J., and Klewitz, T. M. (2002) Qualification of cellulose nitrate membranes for lateral-flow assays. IVD Technol.Google Scholar
  36. 36.
    Harlow, E., and Lane, D. (1988) Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratories, Cold Spring HarborGoogle Scholar
  37. 37.
    Jones, K. (2001) Membrane immobilization of nucleic acids, Part 2: Probe Attachment Techniques. IVD Technol. SeptemberGoogle Scholar
  38. 38.
    Sischo, W. M., Atwill, E. R., Lanyon, L. E., and George, J. (2000) Cryptosporidia on dairy farms and the role these farms may have in contaminating surface water supplies in the northeastern United States. Prev Vet Med. 43, 253–267CrossRefPubMedGoogle Scholar
  39. 39.
    Bangs Laboratories, I. (1999) Lateral Flow Tests.
  40. 40.
    Edwards, K. A., and Baeumner, A. J. (2006) Optimization of DNA-tagged dye-encapsulating liposomes for lateral-flow assays based on sandwich hybridization. Anal Bioanal Chem. 386, 1335–1343CrossRefPubMedGoogle Scholar
  41. 41.
    Batteiger, B., Newhall, V. W. J., and Jones, R. B. (1982) The use of Tween 20 as a blocking agent in the immunological detection of proteins transferred to nitrocellulose membranes. J Immunol Methods. 55, 297–307CrossRefPubMedGoogle Scholar
  42. 42.
    Jones, K. D. (1999) Troubleshooting protein binding in nitrocellulose membranes Part I: Principles. IVD Technol. 32Google Scholar
  43. 43.
    Van Dam, A. P., Van den Brink, H. G., and Smeenk, R. J. (1990) Technical problems concerning the use of immunoblots for the detection of antinuclear antibodies. J Immunol Methods. 129, 63–70.CrossRefPubMedGoogle Scholar
  44. 44.
    Zampieri, S., Ghirardello, A., Doria, A., Tonello, M., Bendo, R., Rossini, K., and Gambari, P. F. (2000) The use of Tween 20 in immunoblotting assays for the detection of autoantibodies in connective tissue diseases. J Immunol Methods. 239, 1–11CrossRefPubMedGoogle Scholar
  45. 45.
    Smits, H. L., Chee, H. D., Eapen, C. K., Kuria-kose, M., Sugathan, S., Gasem, M. H., Yersin, C., Sakasi, D., Lai, A. F. R. F., Hartskeerl, R. A., Liesdek, B., Abdoel, T. H., Goris, M. G., and Gussenhoven, G. C. (2001) Latex based, rapid and easy assay for human leptospirosis in a single test format. Trop Med Int Health. 6, 114–118CrossRefPubMedGoogle Scholar
  46. 46.
    Chan, C. P., Sum, K. W., Cheung, K. Y., Glatz, J. F., Sanderson, J. E., Hempel, A., Lehmann, M., Renneberg, I., and Ren-neberg, R. (2003) Development of a quantitative lateral-flow assay for rapid detection of fatty acid-binding protein. J Immunol Methods. 279, 91–100CrossRefPubMedGoogle Scholar
  47. 47.
    Wang, S., Zhang, C., Wang, J., Zhang, Y. (2005) Development of colloidal gold-based flow-through and lateral-flow immunoassays for the rapid detection of the insecticide car-baryl. Anal Chim Acta. 546, 161–66CrossRefGoogle Scholar
  48. 48.
    Klewitz, T., Gessler, F., Beer, H., Pflanz, K., and Scheper, T. (2006) Immunochromato-graphic assay for determination of botulinum neurotoxin type D. Sensors and Actuators B: Chemical. 113, 582–589CrossRefGoogle Scholar
  49. 49.
    Shyu, R. H., Shyu, H. F., Liu, H. W., and Tang, S. S. (2002) Colloidal gold-based immunochromatographic assay for detection of ricin. Toxicon. 40, 255–258CrossRefPubMedGoogle Scholar
  50. 50.
    Greenwald, R., Esfandiari, J., Lesellier, S., Houghton, R., Pollock, J., Aagaard, C., Andersen, P., Hewinson, R. G., Chambers, M., and Lyashchenko, K. (2003) Improved serodetection of Mycobacterium bovis infection in badgers (Meles meles) using multian-tigen test formats. Diagn Microbiol Infect Dis. 46, 197–203CrossRefPubMedGoogle Scholar
  51. 51.
    Birnbaum, S., Uden, C., Magnusson, C. G., and Nilsson, S. (1992) Latex-based thin-layer immunoaffinity chromatography for quantita-tion of protein analytes. Anal Biochem. 206, 168–171CrossRefPubMedGoogle Scholar
  52. 52.
    LaBorde, R. and O'Farrell, B. (2002) Paramagnetic-particle detection in lateral-flow assays. IVD Technol. 8, 36–41Google Scholar
  53. 53.
    Szoka, F., Olson, F., Heath, T., Vail, W., Mayhew, E., and Papahadjopoulos, D. (1980) Preparation of unilamellar lipo-somes of intermediate size (0.1–0.2 μmol) by a combination of reverse phase evaporation and extrusion through polycarbonate membranes. Biochim Biophys Acta. 601, 559–571CrossRefPubMedGoogle Scholar
  54. 54.
    Szoka, F., Jr., and Papahadjopoulos, D. (1978) Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci U S A. 75, 4194–4198CrossRefPubMedGoogle Scholar
  55. 55.
    Edwards, K. A. and Baeumner, A. J. (2006) Sequential injection analysis system for the sandwich hybridization-based detection of nucleic acids. Anal Chem. 78, 1958–1966CrossRefPubMedGoogle Scholar
  56. 56.
    Rule, G. S., Montagna, R. A., and Durst, R. A. (1997) Characteristics of DNA-tagged liposomes allowing their use in capillary-migration, sandwich-hybridization assays. Anal Biochem. 244, 260–269CrossRefPubMedGoogle Scholar
  57. 57.
    Rongen, H. A. H., Bult, A., and vanBen-nekom, W. P. (1997) Liposomes and immu-noassays. J Imm Meth. 204, 105–133CrossRefGoogle Scholar
  58. 58.
    Esch, M. B., Baeumner, A. J., and Durst, R. A. (2001) Detection of Cryptosporidium par-vum using oligonucleotide-tagged liposomes in a competitive assay format. Anal Chem. 73, 3162–3167CrossRefPubMedGoogle Scholar
  59. 59.
    Locascio-Brown, L., Plant, A. L., Chesler, R., Kroll, M., Ruddel, M., and Durst, R. A. (1993) Liposome-based flow-injection immunoassay for determining theophylline in serum. Clin Chem. 39, 386–391PubMedGoogle Scholar
  60. 60.
    Edwards, K. A. and Baeumner, A. J. (2007) Synthesis of a liposome incorporated 1-car-boxyalkylxanthine–phospholipid conjugate and its recognition by an RNA aptamer. Talanta. 71, 365–372CrossRefPubMedGoogle Scholar
  61. 61.
    Edwards, K. A., and Baeumner, A. J. (2006) Optimization of DNA-tagged liposomes for use in microtiter plate analyses. Anal Bioanal Chem. 386, 1613–1623CrossRefPubMedGoogle Scholar
  62. 62.
    Goral, V. N., Zaytseva, N. V., and Baeumner, A. J. (2006) Electrochemical microfluidic biosensor for the detection of nucleic acid sequences. Lab Chip. 6, 414–421CrossRefPubMedGoogle Scholar
  63. 63.
    Deiman, B., van Aarle, P., and Sillekens, P. (2002) Characteristics and applications of nucleic acid sequence-based amplification (NASBA). Mol Biotechnol. 20, 163–179CrossRefPubMedGoogle Scholar
  64. 64.
    Clemons, W. M., Jr., May, J. L., Wimberly, B. T., McCutcheon, J. P., Capel, M. S., and Ramakrishnan, V. (1999) Structure of a bacte rial 30S ribosomal subunit at 5.5 A resolution. Nature. 400, 833–840CrossRefPubMedGoogle Scholar
  65. 65.
    Cook, N. (2003) The use of NASBA for the detection of microbial pathogens in food and environmental samples. J Microbiol Methods. 53, 165–174CrossRefPubMedGoogle Scholar
  66. 66.
    Birch, L., Dawson, C. E., Cornett, J. H., and Keer, J. T. (2001) A comparison of nucleic acid amplification techniques for the assessment of bacterial viability. Lett Appl Microbiol. 33, 296–301CrossRefPubMedGoogle Scholar
  67. 67.
    Keer, J. T., and Birch, L. (2003) Molecular methods for the assessment of bacterial viability. J Microbiol Methods. 53, 175–183CrossRefPubMedGoogle Scholar
  68. 68.
    Vandamme, A. M., Van Dooren, S., Kok, W., Goubau, P., Fransen, K., Kievits, T., Schmit, J. C., De Clercq, E., and Desmyter, J. (1995) Detection of HIV-1 RNA in plasma and serum samples using the NASBA amplification system compared to RNA-PCR. J Virol Methods. 52, 121–32CrossRefPubMedGoogle Scholar
  69. 69.
    Simpkins, S. A., Chan, A. B., Hays, J., Popping, B., and Cook, N. (2000) An RNA transcription-based amplification technique (NASBA) for the detection of viable Salmonella enterica. Lett Appl Microbiol. 30, 75–79CrossRefPubMedGoogle Scholar
  70. 70.
    Sakallah, S. A. (2000) Molecular diagnostics of infectious diseases: state of the technology. Biotechnol Annu Rev. 6, 141–61CrossRefPubMedGoogle Scholar
  71. 71.
    Iqbal, S. S., Mayo, M. W., Bruno, J. G., Bronk, B. V., Batt, C. A., and Chambers, J. P. (2000) A review of molecular recognition technologies for detection of biological threat agents. Biosens Bioelectron. 15, 549–578CrossRefPubMedGoogle Scholar
  72. 72.
    Wolfe, H. J. (1988) DNA probes in diagnostic pathology. Am J Clin Pathol. 90, 340–344PubMedGoogle Scholar
  73. 73.
    Mac Kenzie, W. R., Hoxie, N. J., Proctor, M. E., Gradus, M. S., Blair, K. A., Peterson, D. E., Kazmierczak, J. J., Addiss, D. G., Fox, K. R., Rose, J. B., and et al. (1994) A massive outbreak in Milwaukee of crypt-osporidium infection transmitted through the public water supply. N Engl J Med. 331, 161–167CrossRefPubMedGoogle Scholar
  74. 74.
    Fayer, R., Trout, J. M., Lewis, E. J., Santin, M., Zhou, L., Lal, A. A., and Xiao, L. (2003) Contamination of Atlantic coast commercial shellfish with Cryptosporidium. Parasitol Res. 89, 141–145PubMedGoogle Scholar
  75. 75.
    Nime, F. A., Burek, J. D., Page, D. L., Hols-cher, M. A., and Yardley, J. H. (1976) Acute enterocolitis in a human being infected with the protozoan Cryptosporidium. Gastroenter-ology. 70, 592–598Google Scholar
  76. 76.
    Brown, T. A. (2002) Genomes, Wiley, New YorkGoogle Scholar
  77. 77.
    Somer, L., and Kashi, Y. (2003) A PCR method based on 16S rRNA sequence for simultaneous detection of the genus Listeria and the species Listeria monocytogenes in food products. J Food Prot. 66, 1658–1665PubMedGoogle Scholar
  78. 78.
    Fuchs, B. M., Glockner, F. O., Wulf, J., and Amann, R. (2000) Unlabeled helper oligo-nucleotides increase the in situ accessibility to 16S rRNA of fluorescently labeled oligonu-cleotide probes. Appl Environ Microbiol. 66, 3603–3607CrossRefPubMedGoogle Scholar
  79. 79.
    Ban, N., Nissen, P., Hansen, J., Capel, M., Moore, P. B., and Steitz, T. A. (1999) Placement of protein and RNA structures into a 5 A-resolution map of the 50S ribosomal subu-nit. Nature. 400, 841–847CrossRefPubMedGoogle Scholar
  80. 80.
    Nugen, S. R., Leonard, B., and Baeumner, A. J. (2006) Application of a unique server-based oligonucleotide probe selection tool toward a novel biosensor for the detection of Streptococcus pyogenes. Biosens Bioelectron. 22, 2442–2448CrossRefPubMedGoogle Scholar
  81. 81.
    Small, J., Call, D. R., Brockman, F. J., Straub, T. M., and Chandler, D. P. (2001) Direct detection of 16S rRNA in soil extracts by using oligonucleotide microarrays. Appl Environ Microbiol. 67, 4708–4716CrossRefPubMedGoogle Scholar
  82. 82.
    Chaney, R., Rider, J., and Pamphilon, D. (1999) Direct detection of bacteria in cellular blood products using bacterial ribosomal RNA-directed probes coupled to electrochem-iluminescence. Transfus Med. 9, 177–188CrossRefPubMedGoogle Scholar
  83. 83.
    Chen, C. S., Baeumner, A. J., and Durst, R. A. (2005) Protein G-liposomal nanovesicles as universal reagents for immunoassays. Talanta. 67, 205–211CrossRefPubMedGoogle Scholar
  84. 84.
    Plant, A. L., Brizgys, M. V., Locasio-Brown, L., and Durst, R. A. (1989) Generic liposome reagent for immunoassays. Anal Biochem. 176, 420–426CrossRefPubMedGoogle Scholar
  85. 85.
    Edwards, K. A., and Baeumner, A. J. (2007) DNA-oligonucleotide encapsulating lipo-somes as a secondary signal amplification means. Anal Chem. 79, 1806–1815CrossRefPubMedGoogle Scholar
  86. 86.
    Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415CrossRefPubMedGoogle Scholar
  87. 87.
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Basic local alignment search tool. J Mol Biol. 215, 403–410PubMedGoogle Scholar
  88. 88.
    Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., and Wheeler, D. L. (2004) Gen-Bank: update. Nucleic Acids Res. 32, D23–D26CrossRefPubMedGoogle Scholar
  89. 89.
    Koppel, D. E. (1972) Analysis of macromo-lecular polydispersity in intensity correlation spectroscopy – method of cumulants. J Chem Phys. 57, 4814–4820CrossRefGoogle Scholar
  90. 90.
    Frisken, B. J. (2001) Revisiting the method of cumulants for the analysis of dynamic light-scattering data. Appl Opt. 40, 4087–4091CrossRefPubMedGoogle Scholar
  91. 91.
    Fiske, C. H., and Subbarow, Y. (1925) The colorimetric determination of phosphorus. J Biol Chem. 66, 375–400Google Scholar
  92. 92.
    (2001) RNeasy Mini Handbook, QiagenGoogle Scholar
  93. 93.
    Boom, R., Sol, C. J., Salimans, M. M., Jansen, C. L., Wertheim-van Dillen, P. M., and van der Noordaa, J. (1990) Rapid and simple method for purification of nucleic acids. J Clin Micro-biol. 28, 495–503Google Scholar
  94. 94.
    Bartlett, G. R. (1959) Phosphorus assay in column chromatography. J Biol Chem. 234, 466–468PubMedGoogle Scholar
  95. 95.
    Coyne, V., James, D., Reid, S., and Rybicki, E. (1998) Detection of nucleic acids by hybridization. Accessed March 24 2007
  96. 96.
    Boutet, V., Delaunay, V., De Oliveira, M. C., Boquet, D., Grognet, J. M., Grassi, J., and Deverre, J. R. (2000) Real-time monitoring of the hybridization reaction: application to the quantification of oligonucleotides in biological samples. Biochem Biophys Res Commun. 268, 92–98CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Katie A. Edwards
    • 1
  • Antje J. Baeumner
    • 1
  1. 1.Department of Biological and Environmental EngineeringCornell UniversityIthacaUSA

Personalised recommendations