Advertisement

A Set of Piezoelectric Biosensors Using Cholinesterases

  • Carsten Teller
  • Jan Halámek
  • Alexander Makower
  • Frieder W. Scheller
Part of the Methods in Molecular Biology™ book series (MIMB, volume 504)

Summary

Piezoelectric sensors have become a versatile tool in biosensorics to study protein—protein and protein—small molecule interactions. Here we present theoretical background on piezoelectric sensors and instructions, how to modify their surface with various recognition elements for cholinesterases. These recognition elements comprise an organophosphate (paraoxon), a cocaine derivative (BZE-DADOO), and a tricyclic, aromatic compound (propidium). Additionally, a guide to the kinetic evaluation of the obtained binding curves is given in this chapter.

Key words

Piezoelectric biosensors QCM Cholinesterase Pesticides Drugs Antibody Kinetic evaluation. 

Notes

Acknowledgments

The authors thank the European Union (Marie-Curie-fellowship HPMD-CT-2001-00062) and the “International Max Planck Research School on Biomimetic Systems” (PhD scholarship) for financial support.

References

  1. 1.
    Thevenot, D. R., Toth, K., Durst, R. A., and Wilson, G. S. (2001) Electrochemical biosensors: recommended definitions and classification. Biosensors & Bioelectronics16, 121–131CrossRefGoogle Scholar
  2. 2.
    Curie, J., and Curie, P. (1880) Développe-ment, par pression, de l'électricité polaire dans les cristaux hémièdres à faces inclinées. Comptes rendus de l'Académie des sciences91, 294–295Google Scholar
  3. 3.
    Sauerbrey, G. (1959) Verwendung Von Schwingquarzen Zur Wägung Dünner Schichten Und Zur Mikrowägung. Zeitschrift Für Physik155, 206–222CrossRefGoogle Scholar
  4. 4.
    Bunde, R. L., Jarvi, E. J., and Rosentreter, J. J. (1998) Piezoelectric quartz crystal biosensors. Talanta46, 1223–1236CrossRefPubMedGoogle Scholar
  5. 5.
    Janshoff, A., Galla, H. J., and Steinem, C. (2000) Piezoelectric mass-sensing devices as biosensors — an alternative to optical biosensors? Angewandte Chemie-International Edition 39, 4004–4032Google Scholar
  6. 6.
    Kanazawa, K. K., and Gordon, J. G. (1985) Frequency of a Quartz Microbalance in Contact with Liquid. Analytical Chemistry57, 1770–1771CrossRefGoogle Scholar
  7. 7.
    Kößlinger, C., Uttenthaler, E., Abel, T., Hauck, S., and Drost, S. (1998) Comparison of the determination of affinity constants with surface plasmon resonance and quartz crystal microbalance, in Eurosensors XII(White, N. M., Ed.), Southampton, UK, pp. 845–848Google Scholar
  8. 8.
    Mrksich, M., and Whitesides, G. M. (1996) Using self-assembled monolayers to understand the interactions of man-made surfaces with proteins and cells. Annual Review of Biophysics and Biomolecular Structure 25, 55–78CrossRefPubMedGoogle Scholar
  9. 9.
    Halamek, J., Hepel, M., and Skladal, P. (2001) Investigation of highly sensitive piezoelectric immunosensors for 2,4-dichlo-rophenoxyacetic acid. Biosensors & Bioelec-tronics16, 253–260CrossRefGoogle Scholar
  10. 10.
    Pribyl, J., Hepel, M., Halámek, J., and Skla-dal, P. (2003) Development of piezoelectric immunosensors for competitive and direct determination of atrazine. Sensors and Actuators B-Chemical91, 333–341CrossRefGoogle Scholar
  11. 11.
    Halamek, J., Pribyl, J., Makower, A., Skladal, P., and Scheller, F. W. (2005) Sensitive detection of organophosphates in river water by means of a piezoelectric biosensor. Analytical and Bioanalytical Chemistry382, 1904–1911CrossRefPubMedGoogle Scholar
  12. 12.
    Janshoff, A., Steinem, C., Sieber, M., elBaya, A., Schmidt, M. A., and Galla, H. J. (1997) Quartz crystal microbalance investigation of the interaction of bacterial toxins with ganglio-side containing solid supported membranes. European Biophysics Journal with Biophysics Letters26, 261–270PubMedGoogle Scholar
  13. 13.
    Halamek, J., Makower, A., Skladal, P., and Scheller, F. W. (2002) Highly sensitive detection of cocaine using a piezoelectric immu-nosensor. Biosensors & Bioelectronics17, 1045–1050CrossRefGoogle Scholar
  14. 14.
    Makower, A., Halámek, J., Skladal, P., Kernchen, F., and Scheller, F. W. (2003) New principle of direct real-time monitoring of the interaction of cholinesterase and its inhibitors by piezolectric biosensor. Biosensors & Bioelectronics18, 1329–1337CrossRefGoogle Scholar
  15. 15.
    Halámek, J., Hepel, M., and Skladal, P. (2001) Investigation of highly sensitive piezoelectric immunosensors for 2,4-dichlorophenoxyacetic acid. Biosensors and Bioelectronics16, 253–260CrossRefPubMedGoogle Scholar
  16. 16.
    O'Sullivan, C. K., and Guilbault, G. G. (1999) Commercial quartz crystal microbal-ances — theory and applications. Biosensors & Bioelectronics14, 663–670CrossRefGoogle Scholar
  17. 17.
    Chaabihi, H., Fournier, D., Fedon, Y., Bossy, J. P. , Ravallec, M., Devauchelle, G., and Cerutti, M. (1994) Biochemical characterization of Drosophila melanogasterace-tylcholinesterase expressed by recombinant baculoviruses. Biochemical and Biophysical Research Communications203, 734–742CrossRefPubMedGoogle Scholar
  18. 18.
    Bradford, M. M. (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Analytical Biochemistry72, 248–254CrossRefPubMedGoogle Scholar
  19. 19.
    Ellman, G. L., Courtney, K. D., Andres, V., and Featherstone, R. M. (1961) A new and rapid colorimetric determination of acetyl-cholinesterase activity. Biochemical Pharmacology7, 88–95CrossRefPubMedGoogle Scholar
  20. 20.
    Teller, C., Halámek, J., Makower, A., Fournier, D., Schulze, H., and Scheller, F. W. (2006) A piezoelectric sensor with propidium as a recognition element for cholinesterases. Sensors and Actuators B-Chemical113, 214–221CrossRefGoogle Scholar
  21. 21.
    Halamek, J., Makower, A., Knosche, K., Skladal, P. , and Scheller, F. W. (2005) Piezoelectric affinity sensors for cocaine and cholineste-rase inhibitors. Talanta 65, 337–342CrossRefPubMedGoogle Scholar
  22. 22.
    Halámek, J., Teller, C., Makower, A., Fournier, D., and Scheller, F. W. (2006) EQCN based cholinesterase biosensors. Elec-trochimica Acta51, 5174–5181CrossRefGoogle Scholar
  23. 23.
    Skladal, P. (2003) Piezoelectric quartz crystal sensors applied for bioanalytical assays and characterization of affinity interactions. Journal of the Brazilian Chemical Society14, 491–502CrossRefGoogle Scholar
  24. 24.
    Halamek, J., Teller, C., Makower, A., Fournier, D., and Scheller, F. W. (2006) EQCN based cholinesterase biosensors. Electrochimica Acta51, 5174–5181CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Carsten Teller
    • 1
  • Jan Halámek
    • 2
  • Alexander Makower
    • 1
  • Frieder W. Scheller
    • 1
  1. 1.Department of Analytical BiochemistryUniversity of PotsdamPotsdamGermany
  2. 2.Department of Analytical BiochemistryUniversity of Potsdam, Potsdam, Germany Biophysical Engineering Group, University of TwenteEnschedeThe Netherlands

Personalised recommendations