Advertisement

Label-Free Detection with the Liquid Core Optical Ring Resonator Sensing Platform

  • Ian M. White
  • Hongying Zhu
  • Jonathan D. Suter
  • Xudong Fan
  • Mohammed Zourob
Part of the Methods in Molecular Biology™ book series (MIMB, volume 503)

Summary

Optical label-free detection prevents the cost and complexity of fluorescence and radio labeling while providing accurate quantitative and kinetic results. We have developed a new optical label-free sensor called the liquid core optical ring resonator (LCORR). The LCORR integrates optical ring resonator sensors into the microfluidic delivery system by using glass capillaries with a thin wall. The LCORR is capable of performing refractive index detection on liquid samples, as well as bio/chemical analyte detection down to detection limits on the scale of pg/mm2 on a sensing surface.

Keywords

Optical ring resonator LCORR Whispering gallery modes Refractive index detection Protease detection DNA sequence detection 

References

  1. 1.
    White, I. M., Oveys, H., and Fan, X. (2006) Liquid core optical ring resonator sensors, Opt. Lett.31, 1319–1321CrossRefPubMedGoogle Scholar
  2. 2.
    White, I. M., Oveys, H., Fan, X., Smith, T. L., and Zhang, J. (2006) Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides, Appl. Phys. Lett.89, 191106–191101–191106-1-3CrossRefGoogle Scholar
  3. 3.
    White, I. M., Suter, J. D., Oveys, H., and Fan, X. (2007) Universal coupling between metal-clad waveguides and optical ring resonators, Opt. Express.15, 646–651CrossRefPubMedGoogle Scholar
  4. 4.
    Suter, J. D., White, I. M., Zhu, H., and Fan, X. (2007) Thermal characterization of liquid core optical ring resonator sensors, Appl. Opt.46, 389–396CrossRefPubMedGoogle Scholar
  5. 5.
    Zhu, H., White, I. M., Suter, J. D., Zourob, M., and Fan, X. (2007) An integrated refractive index optical ring resonator detector for capillary electrophoresis, Anal. Chem.79, 930–937CrossRefPubMedGoogle Scholar
  6. 6.
    Fan, X., White, I. M., Zhu, H., Suter, J. D., and Oveys, H. (2007) Overview of novel integrated optical ring resonator bio/chemical sensors, Proc. SPIE6452, 64520MCrossRefGoogle Scholar
  7. 7.
    White, I. M., Zhu, H., Suter, J. D., Oveys, H., and Fan, X. (2006) Liquid core optical ring resonator label-free biosensor array for lab-on-a-chip development, Proc. SPIE6380, 63800FCrossRefGoogle Scholar
  8. 8.
    White, I. M., Oveys, H., Fan, X., Smith, T. L., and Zhang, J. (2007) Demonstration of a liquid core optical ring resonator sensor coupled with an ARROW waveguide array, Proc. SPIE6475, 647505CrossRefGoogle Scholar
  9. 9.
    Laine, J. -P., Tapalian, H. C., Little, B. E., and Haus, H. A. (2001) Acceleration sensor based on high-Q optical microsphere resonator and pedestal antiresonant reflecting waveguide coupler, Sens. Actuators A93, 1–7CrossRefGoogle Scholar
  10. 10.
    Arnold, S., Khoshsima, M., Teraoka, I., Holler, S., and Vollmer, F. (2003) Shift of whispering-gallery modes in microspheres by protein adsorption, Opt. Lett.28, 272–274CrossRefPubMedGoogle Scholar
  11. 11.
    Vollmer, F., Arnold, S., Braun, D., Teraoka, I., and Libchaber, A. (2003) Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities, Biophys. J.85, 1974–1979CrossRefPubMedGoogle Scholar
  12. 12.
    Hanumegowda, N. M., White, I. M., Oveys, H., and Fan, X. (2005) Label-free protease sensors based on optical microsphere resonators, Sensor Lett.3, 315–319CrossRefGoogle Scholar
  13. 13.
    Hanumegowda, N. M., White, I. M., and Fan, X. (2006) Aqueous mercuric ion detection with microsphere optical ring resonator sensors, Sens. Actuators B120, 207–212CrossRefGoogle Scholar
  14. 14.
    Zhu, H., Suter, J. D., White, I. M., and Fan, X. (2006) Aptamer based microsphere biosensor for thrombin detection, Sensors6, 785–795CrossRefGoogle Scholar
  15. 15.
    Boyd, R. W. and Heebner, J. E. (2001) Sensitive disk resonator photonic biosensor, Appl. Opt.40, 5742–5747CrossRefPubMedGoogle Scholar
  16. 16.
    Blair, S. and Chen, Y. (2001) Resonant-enhanced evanescent-wave fluorescence bio-sensing with cylindrical optical cavities, Appl. Opt.40, 570–582CrossRefPubMedGoogle Scholar
  17. 17.
    Armani, A. M. and Vahala, K. J. (2006) Heavy water detection using ultra-high-Q microcavities, Opt. Lett.31, 1896–1898CrossRefPubMedGoogle Scholar
  18. 18.
    Chao, C. -Y. and Guo, L. J. (2003) Biochemical sensors based on polymer microrings with sharp asymmetrical resonance, Appl. Phys. Lett.83, 1527–1529CrossRefGoogle Scholar
  19. 19.
    Krioukov, E., Greve, J., and Otto, C. (2003) Performance of integrated optical microcavi-ties for refractive index and fluorescence sensing, Sens. Actuators B90, 58–67CrossRefGoogle Scholar
  20. 20.
    Ksendzov, A., Homer, M. L., and Manfreda, A. M. (2004) Integrated optics ring-resonator chemical sensor with polymer transduc-tion layer, Electron. Lett.40, 63–65CrossRefGoogle Scholar
  21. 21.
    Ksendzov, A., and Lin, Y. (2005) Integrated optics ring-resonator sensors for protein detection, Opt. Lett.30, 3344–3346CrossRefPubMedGoogle Scholar
  22. 22.
    Chao, C. -Y., Fung, W., and Guo, L. J. (2006) Polymer microring resonators for biochemical sensing applications, IEEE J. Sel. Top. Quant.12, 134–142CrossRefGoogle Scholar
  23. 23.
    Yalcin, A., Popat, K. C., Aldridge, O. C., Desai, T. A., Hryniewicz, J., Chbouki, N., Little, B. E., King, O., Van, V., Chu, S., Gill, D., Anthes-Washburn, M., Unlu, M. S., and Goldberg, B. B. (2006) Optical sensing of biomolecules using microring resonators, IEEE J. Sel. Top. Quant.12, 148–155CrossRefGoogle Scholar
  24. 24.
    Yang, J. and Guo, L. J. (2006) Optical sensors based on active microcavities, IEEE J. Sel. Top. Quant.12, 143–147CrossRefGoogle Scholar
  25. 25.
    Fitt, A. D., Furusawa, K., Monro, T. M., and Please, C. P. (2001) Modeling the fabrication of hollow fibers: capillary drawing, J. Lightwave Technol.19, 1924–1931CrossRefGoogle Scholar
  26. 26.
    Sumetsky, M., Dulashko, Y., and Hale, A. (2004) Fabrication and study of bent and coiled free silica nanowires: self-coupling microloop optical interferometer, Opt. Express12, 3521–3531CrossRefPubMedGoogle Scholar
  27. 27.
    Ghoreyshi, A. A., Farhadpour, F. A., Solt-anieh, M., and Bansal, A. (2003) Transport of small polar molecules across nonporous polymeric membranes, J. Membr. Sci.211, 193–214CrossRefGoogle Scholar
  28. 28.
    Laine, J. -P., Little, B. E., and Haus, H. A. (1999) Etch-eroded fiber coupler for whispering-gallery-mode excitation in high-Q silica microspheres, IEEE Photonic Tech. L.11, 1429–1431CrossRefGoogle Scholar
  29. 29.
    Knight, J. C., Cheung, G., Jacques, F., and Birks, T. A. (1997) Phased-matched excitation of whispering-gallery-mode resonances by a fiber taper, Opt. Lett.22, 1129–1131CrossRefPubMedGoogle Scholar
  30. 30.
    Tong, L., Gattass, R. R., Ashcom, J. B., He, S., Lou, J., Shen, M., Maxwell, I., and Mazur, E. (2003) Subwavelength-diameter silica wires for low-loss optical wave guiding, Nature426, 816–819CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ian M. White
    • 1
  • Hongying Zhu
    • 1
  • Jonathan D. Suter
    • 1
  • Xudong Fan
    • 1
  • Mohammed Zourob
    • 2
  1. 1.Biological Engineering DepartmentUniversity of Missouri-ColumbiaColumbiaUSA
  2. 2.Biosensors DivisionMontrealCanada

Personalised recommendations