Label-Free Detection with the Resonant Mirror Biosensor

  • Mohammed Zourob
  • Souna Elwary
  • Xudong Fan
  • Stephan Mohr
  • Nicholas J. Goddard
Part of the Methods in Molecular Biology™ book series (MIMB, volume 503)


The resonant mirror (RM) biosensor is a leaky waveguide-based instrument that uses the evanescent field to probe changes in the refractive index at the sensing surface.The RM can therefore be used to monitor in real-time and label-free the interaction between an analyte in solution and its biospecific partner immobilized on the waveguide surface.The RM has been used in studying the interaction of a variety of moieties including proteins, carbohydrates, cells, nucleic acids and receptors, leading to applications in areas such as clinical diagnostics, homeland security, and pharmaceutical and biomolecular interactions. This chapter will review the principle of this biosensor, and the recent advances in instrumentation, different immobilization chemistries, and kinetic studies, as well as some applications.

Key words

Resonant mirror biosensor Leaky waveguide biosensor Label-free Biomolecules immobilization Refractive index Immunosensors Cell detection Nucleic acid hybridization Kinetics Biomedical application Industrial applications 



The authors thank W. Jones and S. Mian from Neosensors for their help and providing the material for this chapter. The views expressed here are those of the authors and do not represent those of Biophage Pharma Inc.


  1. 1.
    Cush, R., Cronin, J.M., Stewart, W.J., Maule, C.H., Molloy, J., and Goddard, N.J. (1993) The resonant mirror: a novel optical sensor for direct sensing of biomolecular interactions, Part I: Principle of operation and associated instrumentation. Biosens. Bioelectron. 8, 347–353CrossRefGoogle Scholar
  2. 2.
    Buckle, P.E., Davies, R.J., Kinning, T., Yeung, D., Edwards, P.R., Pollard-Knight, D., and Lowe, C.R. (1993) The resonant mirror: a novel optical sensor for direct sensing of bio-molecular interactions, Part II: Applications. Biosens. Bioelectron. 8, 355–363CrossRefGoogle Scholar
  3. 3.
    Charalambous, B.M., Evans, J., Feavers, I.M., and Maiden, M.C. (1999) Comparative analysis of two meningococcal immunotyp-ing monoclonal antibodies by resonant mirror biosensor and antibody gene sequencing. Clin. Diagn. Lab. Immunol. 6, 838–843PubMedGoogle Scholar
  4. 4.
    Kobayashi, K., Matsuura, E., Liu, Q., Furu-kawa, J., Kaihara, K., Inagaki, J., Atsumi, T., Sakairi, N., Yasuda, T., Voelker, D.R., and Koike, T., (2001) A specific ligand for β2-glycoprotein I mediates autoantibody-dependent uptake of oxidized low density lipoprotein by macrophages. J. lipid Res. 42, 697–709PubMedGoogle Scholar
  5. 5.
    Zimmer, S., Stocker, A., Sarbolouki, M.N., Spycher, S.E., Sassoon, J., and Azzi, A. (2000) A novel human tocopherol-associated protein. Cloning, in vitro expression, and characterization. J. Biol. Chem. 275, 25672–25680CrossRefPubMedGoogle Scholar
  6. 6.
    Dmitriev, D.A., Massino, Y.S., and Segal, O.L. (2003) Kinetic analysis of interactions between bisepecific monoclonal antibodies and immobilized antigens using a resonant mirror biosensor. J. Immun. Meth. 280, 183–202CrossRefGoogle Scholar
  7. 7.
    Rhodes, D.C. (2000) Binding of Tamm-Horsfall protein to complement 1q measured by ELISA and resonant mirror biosensor techniques under various ionic-strength conditions. Immunol. Cell Biol. 78, 474–482CrossRefPubMedGoogle Scholar
  8. 8.
    Nakra, P., Manivel, V., Vishwakarma, R.A., and Rao, K.V. (2000) Cell responses to a pep-tide epitope. X. epitope selection in a primary response is thermodynamically regulated. J. Immnol. 164, 5615–5625Google Scholar
  9. 9.
    Salek-Ardakani, S., Arrand, J.R., Shaw, D., and Mackett, M. (2000) Heparin and heparan sulfate bind interleukin-10 and modulate its activity. Blood 96, 1879–1888PubMedGoogle Scholar
  10. 10.
    Torigoe, H., Hari, Y., Sekiguchi, M., Obika, S., and Imanishi, T. (2001) 2′-O,4′-C-Methylene bridged nucleic acid modification promotes pyrimidine motif triplex DNA formation at physiological pH. Thermodynamic and kinetic studies. J. Biol. Chem. 276, 2354–2360CrossRefPubMedGoogle Scholar
  11. 11.
    De Zutter, J., Forget, A., Logan, K., and Knight, K. (2001) Phe217 regulates the transfer of allosteric information across the subunit interface of the RecA protein filament. Structure 9, 47–56CrossRefGoogle Scholar
  12. 12.
    Sassoon, J., Lilie, H., Baumann, U., and Kohli, J. (2001) Biochemical characterization of the structure-specific DNA-binding protein cmb1 from Schizosaccharomyces pombe. J. Mol. Biol. 309, 1101–1115CrossRefPubMedGoogle Scholar
  13. 13.
    Despeyroux, D., Walker, N., Pearce, M., Fisher, M., Mcdonnell, M., Bailey, S.C., Griffiths, G.D., and Watts, P. (2000) Characterization of heterogeneity by electrospray mass spectrometry, capillary electrophoresis, and resonant mirror. Anal. Biochem. 279, 23–36CrossRefPubMedGoogle Scholar
  14. 14.
    Hirmo, S., Artursson, E., Puu, G., Wad-storm, T., and Nilsson, B. (1998) Characterization of Helicobacter Pylori interactions with sialglycoconjugates using a resonant mirror biosensor. Anal. Biochem. 257, 63–66CrossRefPubMedGoogle Scholar
  15. 15.
    Hirmo, S., Artursson, E., Puu, G., Wad-storm, T., and Nilsson, B. (1999) Helico-bacter Pylori interactions with human gastric mucin studied with a resonant mirror biosensor. J. Microbiol. Meth. 37, 177–182CrossRefGoogle Scholar
  16. 16.
    Sigurdsson, H.H., Loftsson, T., and Lehr, C.-M. (2006) Assessment of mucoadhesion by a resonant mirror biosensor. Int. J. Pharm. 325, 75–81CrossRefPubMedGoogle Scholar
  17. 17.
    Woods, C.M., Neslund, G., Kornburst, E., and Flaim, S.F. (2000) Perflubron attenuates neutrophil adhesion to activated endothelial cells in vitro. Am. J. Physiol. Lung Cell Mol. Physiol 278, 1008–1017Google Scholar
  18. 18.
    Sheng, N., Fairbanks, M.B., Heinrikson, R.L., Canziani, G., Chaiken, I.M., Mosser, D.M., Zhang, H., and Colman, R.W. (2000) Cleaved high molecular weight kininogen binds directly to the integrin CD11b/CD18 (Mac-1) and blocks adhesion to fibrinogen and ICAM-1. Blood 95, 3788–3795PubMedGoogle Scholar
  19. 19.
    Watts, H.J., Lowe, C.R., and Pollard-Knight, D.V. (1994) Optical biosensor for monitoring microbial cells. Anal. Chem. 66, 2465–2470CrossRefPubMedGoogle Scholar
  20. 20.
    Nunomura, W., Takakuwa, Y., Parra, M., Conboy, C., and Mohandas, N. (2000) Regulation of protein 4.1R, p55, and glycoph-orin C ternary complex in human erythrocyte membrane. Biol. Chem. 275, 24540–24546CrossRefGoogle Scholar
  21. 21.
    Nunomura, W., Takakuwa, Y., Parra, M., Conboy, C., and Mohandas, N. (2000) Ca2+-dependent and Ca2+-independent Calmodu-lin Binding Sites in Erythrocyte Protein 4.1. Implications for regulation of protein 4.1 interactions with transmembrane proteins. J. Biol. Chem. 275, 6360–6367CrossRefPubMedGoogle Scholar
  22. 22.
    Gill, A., Bracewell, D.G., Maule, C.H., Lowe, C.A., Hoare, M. (1998) Bioprocess. monitoring: An optical biosensor for rapid bio-product analysis. J. Biotechnol. 65, 69–80CrossRefPubMedGoogle Scholar
  23. 23.
    Rasooly, L., and Rasooly, A. (1999) Real time biosensor analysis of Staphylococcal entero-toxin A in food. Int. J. Food Microbiol. 49, 119–127CrossRefPubMedGoogle Scholar
  24. 24.
    Skaldal, P. (1999) effect of methanol on the interaction of monoclonal antibody with free and immobilized atrazine studied using the resonant mirror-based biosensor. Biosens. Bioelectron. 14, 257–263CrossRefGoogle Scholar
  25. 25.
    IAsys Technical note 3.1 BI (1994) The resonant mirrorGoogle Scholar
  26. 26.
    Goddard, N.J., Pollard-Knight, D., and Maule, C.H. (1994) Real-time biomolecular interaction analysis using the resonant mirror sensors. Analyst, 119, 583–588CrossRefGoogle Scholar
  27. 27.
    Goddard, N.J., Singh, K., Holmes, R.J., and Bastani, B. (1998) Resonant grating sensors using frustrated total-internal reflection. Sens. Actuators B 51, 131–136CrossRefGoogle Scholar
  28. 28.
    Hulme, J., Malins, C., Singh, K., Fielden, P.R., and Goddard, N.J. (2002) Internally references resonant mirror for chemical and biochemical sensing. Analyst 127, 1233–1236CrossRefPubMedGoogle Scholar
  29. 29.
    Goddard, N.J., Singh, K., Hulme, J.P., Malins, C., and Holmes, R.J. (2002) Internally-referenced resonant mirror devices for dispersion compensation in chemical sensing and biosensing applications. Sens. Actuators A 100, 1–9CrossRefGoogle Scholar
  30. 30.
    Ke, Y., Wilkinson, M.C., Fernig, D.G., Smith, J.A., Rudland, P.S., and Barra-clough, R. (1992) A rapid procedure for production of human basic fibrobalst growth factor in E. coli. Biochim. Biophys. Acta 1131, 307–310PubMedGoogle Scholar
  31. 31.
    Kinsella, L., Chen, H.L., Smith, J.A., Rud-land, P.S., and Fernig, D.G. (1998) Interactions of putative heparin-binding domains of basic fibrobalst growth factor and its receptor, FGFR-1, with heparin. Glycoconjugate J. 15, 419–422CrossRefGoogle Scholar
  32. 32.
    Skerra, A., Pfitzinger, I., and Plückthun, A. (1991) The functional expression of antibody Fv fragemnts in Escherichia coli: Improved vectors and a generally applicable purification technique. Bio/Technology 9, 273–278CrossRefPubMedGoogle Scholar
  33. 33.
    De Mey, J. (1986) The preparation and use of gold probes. Immunocytochemistry- Modern Methods and Applications, 2nd edition, Polak, J. M., Van Noorden, S., Wright and Sons, Bristol, UKGoogle Scholar
  34. 34.
    Richman, P.I., and Bodmer, W.F. (1987) Monoclonal antibodies to human colorectal epithelium: markers for differentiation and tumour characterization. Int J Cancer 39, 317–328CrossRefPubMedGoogle Scholar
  35. 35.
    Willcocks, T.C., and Craig, I.W. (1990) Characterization of the genomic organization of human carcinoembryonic antigen (CEA): comparison with other family members and sequence analysis of 5′ controlling region. Genomics 8, 492–500CrossRefPubMedGoogle Scholar
  36. 36.
    Edwards, P.R., Gill, A., Pollard-Knight, D., Hoare, M., Puckle, P.E., Lowe, C.R., and Leatherbarrow, R.J. (1995) Kinetics of protein—protein interactions at the surface of an optical biosensor. Anal. Biochem. 231, 210–217CrossRefPubMedGoogle Scholar
  37. 37.
    Schuck, P. (1996) Kinetics of ligand binding to receptor immobilized in a polymer matrix, as detected with an evanescent wave biosensor. I. A computer simulation of the influence of mass transport. Biophys. J. 70, 1230–1249CrossRefPubMedGoogle Scholar
  38. 38.
    Athanassopulou, N.R.J., Davies, P.R., Edwards, D. Yeung., Maule, C.H. (1998) Cholera toxin and GM1: a model membrane study with IAsys. Biochem. Soc. Trans. 27, 340–343Google Scholar
  39. 39.
    Brizard, B.L., Chubet, R.G., and Vizard, D.L. (1994) Immunoaffinity purification of FLAG epitope-tagged bacterial alkaline phosphatase using a novel monoclonal antibody and petide elution. BioTechniques 16, 730–735Google Scholar
  40. 40.
    IAsys Application note 1.3 (1994) Sensitivity enhancement using colloidal gold complexesGoogle Scholar
  41. 41.
    Fernig, D.G., and Gallagher, J.T. (1994) Fibroblast growth factors: an information network controlling tissue growth, morphogenesis and repair. Prog. Growth Factor Res. 5, 353–377CrossRefPubMedGoogle Scholar
  42. 42.
    Turnbull, J.E., Fernig, D.G., Key, Y., Wilkinson, M.C., and Gallagher, J.T. (1992) Identification of the basic fibroblast growth factor binding sequence in fibroblast heparan sulphate. J. Biol Chem. 267, 10337–10341PubMedGoogle Scholar
  43. 43.
    IAsys application note 3.6 (1994) Molecular recognition, protein—carbohydrate interactionGoogle Scholar
  44. 44.
    Watts, H., Yeung, D., and Parkes, H. (1995) Real-time detection and quantification of DNA hybridization by an optical biosensor. Anal. Chem. 67, 4283–4289CrossRefPubMedGoogle Scholar
  45. 45.
    Chaiet, I., and Wolf, F.J. (1964) The properties of streptavidin, a biotin-binding protein produced by Streptomycetes. Arch. Biochem. Biophys. 106, 1–5CrossRefPubMedGoogle Scholar
  46. 46.
    IAsys application note 3.3 (1994) Molecular recognition Nucleic acid hybridization.Google Scholar
  47. 47.
    Ward, E.S., Gussow, D., Griffiths, A.D., Jones, P.T., Winter, G. (1989) Binding cativi-ties of a reportoier of single immunoglobulin variable domains secreted from Escherichia coli. Nature 341, 544–546CrossRefPubMedGoogle Scholar
  48. 48.
    IAsys application note 2.2 (1994), Kinetic analysis recombinant antibody fragment (D1.3 Fv) binding to immobilized hen egg lysozymeGoogle Scholar
  49. 49.
    Berry, M.J., Wattam, T.A., Willets, J., Lindner, N., de Graaf, T., Hunt, T., Gani, M., Davis, P.J., and Porter, P. (1994) Assay and purification of Fv fragments in fermenter cultures: design and evaluation of generic binding reagents. J. Immunol. Meth. 167, 173–182CrossRefGoogle Scholar
  50. 50.
    Gill, A., Leatherbarrow, R.J., Hoare, M., Pollard-Knight, D.V., Lowe, P.A., Fortune, D.H. (1996) Analysis of kinetic data of antibody-antigen interaction from an optical biosensor by exponential curve fitting. J. Biotchnol. 18, 117–127CrossRefGoogle Scholar
  51. 51.
    Grov, A., Myklestad, B., and Oeding, P. (1964) Immunochemical studies on antigen preparations from Staphaylococcus aureus.1. Isolation and characterization of antigen A. Acta Pathol. Microbiol. Scand 61, 588–596PubMedGoogle Scholar
  52. 52.
    Oeding, P., Grov, A., Myklestad, B. (1965) Antigenic properties of Staphylococci. Acta Pathol. Microbiol. Scand. 182, 183–190Google Scholar
  53. 53.
    Haukenes, G. (1974) Cellular antigen of Staphylococci. Acta Pathol. Microbiol. Scand. 236, 15–21Google Scholar
  54. 54.
    Gold, P., and Freedman, S.O. (1965) Demonstration of tumor-specific antigens in human colonic carcinomata by immunologi-cal tolerance and absorption techniques. J. Exp. Med. 121, 439–462CrossRefPubMedGoogle Scholar
  55. 55.
    Goldenberg, D.M., Melville, M., and Carter, A.C. (1981) Carcinoembryonic antigen; its role as a marker in the management of cancer. A national Institute of Health Consensus Development Conference. Ann. Intern. Med. 94, 407–409Google Scholar
  56. 56.
    IAsys application note 5.2. (1994), Receptor–cell interactions, binding of L cells bearing the CEA antigen to an immobilized anti-CEA antibodyGoogle Scholar
  57. 57.
    Absolom, D.R. and Van Oss, C.J. (1986) The nature of the antigen–antibody bound and the factors affecting its association and dissociation. CRC Crit. Rev. Immunol. 6, 1–46PubMedGoogle Scholar
  58. 58.
    Langone, J.J. (1982) Protein A of Staphylo-coccus aureus and related immunoglobulin receptors produced by Streptococci and Pneu-mococci. Adv. Immunol. 32, 157–252CrossRefPubMedGoogle Scholar
  59. 59.
    IAsys application note 2.1 (1994), Kinetic analysis Protein A and Human IgG interactionGoogle Scholar
  60. 60.
    Zourob, M., Mohr, S., Treves-Brown, B.J., Fielden, P.R., McDonnell, M.B., and Nicholas, J.G. (2005) An integrated metal clad leaky waveguide sensor for detection of bacteria. Anal. Chem. 77, 232–242CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Mohammed Zourob
    • 1
  • Souna Elwary
    • 1
  • Xudong Fan
    • 2
  • Stephan Mohr
    • 3
  • Nicholas J. Goddard
    • 3
  1. 1.Biosensors DivisionBiophage PharmaMontrealCanada
  2. 2.Department of Biological EngineeringUniversity of Missouri-ColumbiaColumbiaUSA
  3. 3.School of Chemical Engineering and Analytical Science (CEAS)The University of ManchesterManchesterUK

Personalised recommendations