Surface Plasmon Resonance Biosensing

  • Marek Piliarik
  • Hana Vaisocherová
  • Jiří Homola
Part of the Methods in Molecular Biology™ book series (MIMB, volume 503)


Surface plasmon resonance (SPR) biosensors belong to label-free optical biosensing technologies. The SPR method is based on optical measurement of refractive index changes associated with the binding of analyte molecules in a sample to biorecognize molecules immobilized on the SPR sensor. Since late 1990's, SPR biosensors have become the main tool for the study of biomolecular interactions both in life science and pharmaceutical research. In addition, they have been increasingly applied in the detection of chemical and biological substances in important areas such as medical diagnostics, environmental monitoring, food safety and security. This chapter reviews the main principles of SPR biosensor technology and discusses applications of this technology for rapid, sensitive and specific detection of chemical and biological analytes.

Key words

Optical biosensors Affinity biosensing Biorecognition elements Detection of chemical and biological species Bioassays 


  1. 1.
    Homola, J. (2003) Present and future of surface plasmon resonance biosensors. Analytical and Bioanalytical Chemistry 377, 528–539CrossRefPubMedGoogle Scholar
  2. 2.
    Homola, J., Vaisocherová, H., Dostálek, J., and Piliarik, M. (2005) Multi-analyte surface plasmon resonance biosensing. Methods 37, 26–36CrossRefPubMedGoogle Scholar
  3. 3.
    Boozer, C., Kim, G., Cong, S.X., Guan, H.W., and Londergan, T. (2006) Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies. Current Opinion in Biotechnology 17, 400–405CrossRefPubMedGoogle Scholar
  4. 4.
    Rich, R.L., and Myszka, D.G. (2006) Survey of the year 2005 commercial optical biosensor literature. Journal of Molecular Recognition 19, 478–534CrossRefPubMedGoogle Scholar
  5. 5.
    Homola, J. (2006) Surface plasmon resonance based sensors. Springer-VerlagCrossRefGoogle Scholar
  6. 6.
    Raether, H. (1988) Surface-plasmons on smooth and rough surfaces and on gratings. Springer Tracts in Modern Physics 111, 1–133CrossRefGoogle Scholar
  7. 7.
    de Feijter, J.A., Benjamins, J., and Veer, F.A. (1978) Ellipsometry as a tool to study the adsorption of synthetic and biopolymers at the air–water interface. Biopolymers 17, 1759–1772CrossRefGoogle Scholar
  8. 8.
    Tumolo, T., Angnes, L., and Baptista, M.S. (2004) Determination of the refractive index increment (dn/dc) of molecule and mac-romolecule solutions by surface plasmon resonance. Analytical Biochemistry 333, 273–279CrossRefPubMedGoogle Scholar
  9. 9.
    Nenninger, G.G., Piliarik, M., and Homola, J. (2002) Data analysis for optical sensors based on spectroscopy of surface plasmons. Measurement Science … Technology 13, 2038–2046CrossRefGoogle Scholar
  10. 10.
    Piliarik, M., Vaisocherová, H., and Homola, J. (2007) Towards parallelized surface plasmon resonance sensor platform for sensitive detection of oligonucleotides. Sensorors and Actuators B Chem 121, 187–193CrossRefGoogle Scholar
  11. 11.
    Tomizaki, K.Y., Usui, K., and Mihara, H. (2005) Protein-detecting microarrays: current accomplishments and requirements. Chembiochem 6, 782–799CrossRefPubMedGoogle Scholar
  12. 12.
    Angenendt, P. (2005) Progress in protein and antibody microarray technology. Drug Discovery Today 10, 503–511CrossRefPubMedGoogle Scholar
  13. 13.
    Elia, G., Silacci, M., Scheurer, S., Scheuermann, J., and Neri, D. (2002) Affinitycapture reagents for protein arrays. Trends Biotechnology 20, S19–S22CrossRefGoogle Scholar
  14. 14.
    Koubová, V., Brynda, E., Karasová, L., Škvor, J., Homola, J., Dostálek, J., Tobiška, P. , and Rošický, J. (2001) Detection of foodborne pathogens using surface plasmon resonance biosensors. Sensorors and Actuators B Chem 74, 100–105CrossRefGoogle Scholar
  15. 15.
    Lofas, S., Johnsson, B., Edstrom, A., Hansson, A., Lindquist, G., Hillgren, R.M.M., and Stigh, L. (1995) Methods for site controlled coupling to carboxymethyldextran surfaces in surface-plasmon resonance sensors. Biosensors … Bioelectronics 10, 813–822CrossRefGoogle Scholar
  16. 16.
    Busse, S., Scheumann, V., Menges, B., and Mittler, S. (2002) Sensitivity studies for specific binding reactions using the biotin/streptavidin system by evanescent optical methods. Biosensors … Bioelectronics 17, 704–710CrossRefGoogle Scholar
  17. 17.
    Ladd, J., Boozer, C., Yu, Q., Chen, S., Homola, J., and Jiang, S. (2004) DNA-directed protein immobilization on mixed self-assembled monolayers via a streptavidin bridge. Langmuir 20, 8090–8095CrossRefPubMedGoogle Scholar
  18. 18.
    Oshannessy, D.J., Brighamburke, M., and Peck, K. (1992) Immobilization chemistries suitable for use in the biacore surface-plasmon resonance detector. Analytical Biochemistry 205, 132–136CrossRefGoogle Scholar
  19. 19.
    Knoll, W., Liley, M., Piscevic, D., Spinke, J., and Tarlov, M.J. (1997) Supramolecular architectures for the functionalization of solid surfaces. Advances in Biophysics 34, 231–251CrossRefPubMedGoogle Scholar
  20. 20.
    Myszka, D.G., He, X., Dembo, M., Morton, T.A., and Goldstein, B. (1998) Extending the range of rate constants available from BIACORE: interpreting mass transportinfluenced binding data. Biophysical Journal 75, 583–594CrossRefPubMedGoogle Scholar
  21. 21.
    Sikavitsas, V., Nitsche, J.M., and Mountziaris, T.J. (2002) Transport and kinetic processes underlying biomolecular interactions in the BIACORE optical biosensor. Biotechnology Progress 18, 885–897CrossRefPubMedGoogle Scholar
  22. 22.
    Witz, J. (1999) Kinetic analysis of analyte binding by optical biosensors: hydrodynamic penetration of the analyte flow into the polymer matrix reduces the influence of mass transport. Analytical Biochemistry 270, 201–206CrossRefPubMedGoogle Scholar
  23. 23.
    Ward, L.D., and Winzor, D.J. (2000) Relative merits of optical biosensors based on flow cell and cuvette designs. Analytical Biochemistry 285, 179–193CrossRefPubMedGoogle Scholar
  24. 24.
    Sjölander, S., and Urbanitzky, C. (1991) Integrated fluid handling system for biomolecular interaction analysis. Analytical Chemistry 63, 2338–2345CrossRefPubMedGoogle Scholar
  25. 25.
    Wang, H., Chen, S., Li, L., and Jiang, S. (2005) Improved method for the preparation of carboxylic acid and amine terminated self-assembled monolayers of alkanethiolates. Langmuir 21, 2633–2636CrossRefPubMedGoogle Scholar
  26. 26.
    Lahiri, J., Isaacs, L., Tien, J., and Whitesides, G.M. (1999) A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate: a surface plasmon resonance study. Analytical Chemistry 71, 777–790CrossRefPubMedGoogle Scholar
  27. 27.
    Vaisocherová, H., Zítová, A., Lachmanová, M., Štepánek, J., Kralíková, S., Liboška, R., Rejman, D., Rosenberg, I., and Homola, J. (2006) Investigating oligonucleotide hybridization at subnanomolar level by surface plasmon resonance biosensor method. Biopolymers 82, 394–398CrossRefPubMedGoogle Scholar
  28. 28.
    Pinkel, D., Segraves, R., Sudar, D., Clark, S., Poole, I., Kowbel, D., Collins, C., Kuo, W.L., Chen, C., Zhai, Y., Dairkee, S.H., Ljung, B.M., Gray, J.W., and Albertson, D.G. (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nature Genetics 20, 207–211CrossRefPubMedGoogle Scholar
  29. 29.
    Homola, J., Dostálek, J., Chen, S.F., Rasooly, A., Jiang, S.Y., and Yee, S.S. (2002) Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk. International Journal of Food Microbiology 75, 61–69CrossRefPubMedGoogle Scholar
  30. 30.
    Oh, B.K., Kim, Y.K., Lee, W., Bae, Y.M., Lee, W.H., and Choi, J.W. (2003) Immunosensor for detection of Legionella pneumophila using surface plasmon resonance. Biosensors … Bioelectronics 18, 605–611CrossRefGoogle Scholar
  31. 31.
    Thomsen, V., Schatzlein, D., and Mercuro, D. (2003) Limits of detection in spectroscopy. Spectroscopy 18, 112–114Google Scholar
  32. 32.
    Gobi, K.V., Tanaka, H., Shoyama, Y., and Miura, N. (2004) Continuous flow immunosensor for highly selective and real-time detection of sub-ppb levels of 2-hydroxybiphenyl by using surface plasmon resonance imaging. Biosensors & Bioelectronics 20, 350–357CrossRefGoogle Scholar
  33. 33.
    Dostálek, J., and Homola, J. (2008) Surface plasmon resonance sensor based on an array of diffraction gratings for highly-parallelized observation of biomolecular interactions, Sensors and Actuators B: Chemical 129, 303–310CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Marek Piliarik
    • 1
  • Hana Vaisocherová
    • 1
  • Jiří Homola
    • 1
  1. 1.Institute of Photonics and ElectronicsAcademy of Sciences of the Czech RepublicPragueCzech Republic

Personalised recommendations