Advertisement

Optical Biosensors Based on Photonic Crystal Surface Waves

  • Valery N. Konopsky
  • Elena V. Alieva
Part of the Methods in Molecular Biology™ book series (MIMB, volume 503)

Summary

Optical biosensors have played a key role in the selective recognition of target biomolecules and in biomolecular interaction analysis, providing kinetic data about biological binding events in real time without labeling. The advantages of the label-free concept are the elimination of detrimental effects from labels that may interfere with fundamental interaction and the absence of a time-consuming pretreatment. The disadvantages of all label-free techniques–including the most mature one, surface plasmon resonance (SPR) technique, are a deficient sensitivity to a specific signal and undesirable susceptibilities to non-specific signals, e.g., to the volume effect of refraction index variations. These variations arise from temperature fluctuations and drifts and they are the limiting factor for many state-of-the-art optical biosensors. Here we describe a new optical biosensor technique based on the registration of dual optical s-polarized waves on a photonic crystal surface. The simultaneous registration of two different optical modes from the same surface spot permits the segregation of the volume and the surface signals, while the absence of metal damping permits an increase in the propagation length of the optical surface waves and the sensitivity of the biosensor. The technique was tested with the binding of biotin molecules to a streptavidin monolayer that has been detected with a signal/noise ratio of about 15 at 1 s signal accumulation time. The detection limit is about 20 fg of the analyte on the probed spot of the surface.

Key words

Label-free optical biosensors Photonic crystal surface waves Biotin–streptavidin binding Streptavidin postbinding conformational change 

Notes

Acknowledgments

The authors thank S. Grachev for the kind donation of some biochemicals and for helpful advice about surface preparation. This work was partly supported by the European Network of Excellence, NMP3-CT- 2005-515703-2.

References

  1. 1.
    Robinson, G. (1995) The commercial development of planar optical biosensors. Sens. Actuators B 29, 31–36CrossRefGoogle Scholar
  2. 2.
    Cooper, M. A. (2003) Label-free screening of bio-molecular interactions. Anal. Bioanal. Chem. 377, 834–842CrossRefPubMedGoogle Scholar
  3. 3.
    Homola, J., Yee, S. S. and Gauglitz, G. (1999) Surface plasmon resonance sensors: review. Sens. Actuators B 54, 3–15CrossRefGoogle Scholar
  4. 4.
    Raether, H. (1988) Surface Plasmons. Springer, BerlinGoogle Scholar
  5. 5.
    Cush, R., Cronin, J., Stewart, W., Maule, C., Molloy, J. and Goddard, N. (1993) The resonant mirror–a novel optical biosensor for direct sensing of biomolecular interactions. I. Principle of operation and associated instrumentation. Biosens. Bioelectron. 8, 347–353CrossRefGoogle Scholar
  6. 6.
    Alieva, E. V. and Konopsky, V. N. (2004) Biosensor based on surface plasmon interfer-ometry independent on variations of liquid's refraction index. Sens. Actuators B 99, 90–97CrossRefGoogle Scholar
  7. 7.
    Slavík, R., Homola, J. and Vaisocherová, H. (2006) Advanced biosensing using simultaneous excitation of short and long range surface plasmons. Meas. Sci. Technol. 17, 932–938CrossRefGoogle Scholar
  8. 8.
    Cross, G., Reeves, A., Brand, S., Swann, M., Peel, L., Freeman, N. and Lu, J. (2004) The metrics of surface adsorbed small molecules on the Young's fringe dual-slab waveguide interferometer. J. Phys. D Appl. Phys. 37, 74–80CrossRefGoogle Scholar
  9. 9.
    Yablonovitch, E. (1993) Photonic band-gap structures. J. Opt. Soc. Am. B 10, 283–295CrossRefGoogle Scholar
  10. 10.
    Kossel, D. (1966) Analogies between thin-film optics and electron band theory of solids. J. Opt. Soc. Am. 56, 1434–1434Google Scholar
  11. 11.
    Yeh, P., Yariv, A. and Hong, C.-S. (1977) Electromagnetic propagation in periodic stratified media. I. General theory. J. Opt. Soc. Am. 67, 423–438CrossRefGoogle Scholar
  12. 12.
    Yeh, P. , Yariv, A. and Cho, A. Y. (1978) Optical surface waves in periodic layered media. Appl. Phys. Lett. 32, 104–105CrossRefGoogle Scholar
  13. 13.
    Robertson, W. M. and May, M. S. (1999) Surface electromagnetic waves on one-dimensional photonic band gap arrays. Appl. Phys. Lett. 74, 1800–1802CrossRefGoogle Scholar
  14. 14.
    Villa, F., Regalado, L., Ramos-Mendieta, F., Gaspar-Armenta, J. and Lopez-Rios, T. (2002) Photonic crystal sensor based on surface waves for thin-film characterization. Opt. Lett. 27, 646–648CrossRefPubMedGoogle Scholar
  15. 15.
    Li, J., Wang, H., Zhao, Y., Cheng, L., He, N. and Lu, Z. (2001) Assembly method fabricating linkers for covalently bonding DNA on glass surface. Sensors 1, 53–59CrossRefGoogle Scholar
  16. 16.
    Palik, E. D. (1985) Handbook of Optical Constants of Solids. Academic, LondonGoogle Scholar
  17. 17.
  18. 18.
  19. 19.
  20. 20.
    Konopsky, V. N. and Alieva, E. V. (2006) Long-range propagation of plasmon polari-tons in a thin metal film on a one-dimensional photonic crystal surface. Phys. Rev. Lett. 97, 253904CrossRefPubMedGoogle Scholar
  21. 21.
  22. 22.
    Elimelech, M. (1994) Particle deposition on ideal collectors from dilute flowing suspensions: Mathematical formulation, numerical solution, and simulations. Sep. Technol. 4, 186–212CrossRefGoogle Scholar
  23. 23.
    Myszka, D. G., He, X., Dembo, M., Morton, T. A. and Goldstein, B. (1998) Extending the range of rate constants available from BIACORE: Interpreting mass transport-influenced binding data. ,Biophys. J. 75, 583–594CrossRefPubMedGoogle Scholar
  24. 24.
    Hyre, D. E., Trong, I. L., Merritt, E. A., Eccleston, J. F., Green, N. M., Stenkamp, R. E. and Stayton, P. S. (2006) Cooperative hydrogen bond interactions in the streptavidinbiotin system. Protein Sci. 15, 459–467CrossRefPubMedGoogle Scholar
  25. 25.
    Freitag, S., Trong, I. L., Klumb, L., Stayton, P. S. and Stenkamp, R. E. (1997) Structural studies of the streptavidin binding loop. Protein Sci. 6, 1157–1166CrossRefPubMedGoogle Scholar
  26. 26.
    Zybin, A., Grunwald, C., Mirsky, V. M., Kuhlmann, J., Wolfbeis, O. S. and Niemax, K. (2005) Double-wavelength technique for surface plasmon resonance measurements: Basic concept and applications for single sensors and two-dimensional sensor arrays. Anal. Chem. 77, 2393–2399CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Valery N. Konopsky
    • 1
  • Elena V. Alieva
    • 1
  1. 1.Russian Academy of SciencesInstitute of SpectroscopyTroitskRussia

Personalised recommendations