A Simple Portable Electroluminescence Illumination-Based CCD Detector

  • Yordan Kostov
  • Nikolay Sergeev
  • Sean Wilson
  • Keith E. Herold
  • Avraham Rasooly
Part of the Methods in Molecular Biology™ book series (MIMB, volume 503)

In this chapter we describe a simple and relatively inexpensive Electroluminescence (EL) illumination and charged-coupled device (CCD) camera (EL-CCD) based detector for monitoring florescence and colorimetric assays. The portable battery-operated florescence detector includes an EL panel for fluoro-genic excitation at 490 nm, a cooled CCD digital camera to monitor emission at 523 nm, filters and a close up lens. The detector system is controlled by a laptop computer for camera operation, image acquisition and analysis. The system was tested using a fluorogenic peptide substrate (SNAP-25) for botulinum neurotoxin serotype A (BoNT-A) labeled with FITC. The level of detection of the system was found to be 1.25 nM of the peptide, similar to the detection level of a commercial photomultipler-based plate fluorometer. The multichannel EL-CCD was used with an assay plate capable of testing nine samples simultaneously in 1 min at this detection level. The portable system is small and is operated by a 12 V source. The modular detector was designed with easily interchangeable ELs, filters and lenses and can be used and adapted for a wide variety of florescence and colorimetric assays, florescence labels and assay formats.

Key words

Electroluminescence CCD Charge coupled device Fluorescence Fluorometer Botulinum neurotoxin Multichannel detector Florescence assays SNAP-25 



We thank Mr. Steven Sun and Mr. Jesse Frances for their technical assistance. This work was supported in part by the Office of Public Health emergency Preparedness (OPHEP) IAG 224-05-655 (to A. Rasooly and by FDA contract HHSF223200610765P (to Dr. Yordan Kostov)


  1. 1.
    Capitan-Vallvey LF, Asensio LJ, Lopez-Gonzalez J, Fernandez-Ramos MD, Palma AJ. Oxygen-sensing film coated photodetec-tors for portable instrumentation. Anal Chim Acta 2007;583:166–173CrossRefPubMedGoogle Scholar
  2. 2.
    Mac Sweeney MM, Bertolino C, Berney H, Sheehan M. Characterization and optimization of an optical DNA hybridization sensor for the detection of multi-drug resistant tuberculosis. Conf Proc IEEE Eng Med Biol Soc 2004;3:1960–1963PubMedGoogle Scholar
  3. 3.
    Claycomb RW, Delwiche MJ. Biosensor for on-line measurement of bovine progesterone during milking. Biosens Bioelectron 1998;13:1173–1180CrossRefPubMedGoogle Scholar
  4. 4.
    Bruno AE, Barnard S, Rouilly M, Waldner A, Berger J, Ehrat M. All-solid-State miniaturized fluorescence sensor array for the determination of critical gases and electrolytes in blood. Anal Chem 1997;69:507–513CrossRefPubMedGoogle Scholar
  5. 5.
    Moehrs S, Del Guerra A, Herbert DJ, Man-delkern MA. A detector head design for small-animal PET with silicon photomultipli- ers (SiPM). Physics in medicine and biology 2006;51:1113–1127CrossRefPubMedGoogle Scholar
  6. 6.
    Takei M, Kida T, Suzuki K. Sensitive measurement of positron emitters eluted from HPLC. Appl Radiat Isot 2001;55:229–234CrossRefPubMedGoogle Scholar
  7. 7.
    Ruiz-Martinez MC, Berka J, Belenkii A, Foret F, Miller AW, Karger BL. DNA sequencing by capillary electrophoresis with replaceable linear polyacrylamide and laser-induced fluorescence detection. Anal Chem 1993;65:2851–2858CrossRefPubMedGoogle Scholar
  8. 8.
    Tibbe AG, de Grooth BG, Greve J, Liberti PA, Dolan GJ, Terstappen LW. Cell analysis system based on immunomagnetic cell selection and alignment followed by immunofluorescent analysis using compact disk technologies. Cytometry 2001;43:31–37CrossRefPubMedGoogle Scholar
  9. 9.
    Tsukagoshi K, Jinno N, Nakajima R. Development of a micro total analysis system incorporating chemiluminescence detection and application to detection of cancer markers. Anal Chem 2005;77:1684–1688CrossRefPubMedGoogle Scholar
  10. 10.
    Roda A, Manetta AC, Portanti O, et al. A rapid and sensitive 384-well microtitre format chemiluminescent enzyme immuno-assay for 19-nortestosterone. Luminescence 2003;18:72–78CrossRefPubMedGoogle Scholar
  11. 11.
    Ligler FS, Taitt CR, Shriver-Lake LC, Saps-ford KE, Shubin Y, Golden JP. Array biosensor for detection of toxins. Analytical and bioanalytical chemistry 2003;377:469–477CrossRefPubMedGoogle Scholar
  12. 12.
    Svitel J, Surugiu I, Dzgoev A, Ramanathan K, Danielsson B. Functionalized surfaces for optical biosensors: applications to in vitro pesticide residual analysis. Journal of materials science 2001;12:1075–1078PubMedGoogle Scholar
  13. 13.
    Liu Y, Danielsson B. Rapid high throughput assay for fluorimetric detection of dox-orubicin–application of nucleic acid-dye bioprobe. Anal Chim Acta 2007;587:47–51CrossRefPubMedGoogle Scholar
  14. 14.
    Burkert K, Neumann T, Wang J, Jonas U, Knoll W, Ottleben H. Automated preparation method for colloidal crystal arrays of monodisperse and binary colloid mixtures by contact printing with a pintool plotter. Lang-muir 2007;23:3478–3484CrossRefGoogle Scholar
  15. 15.
    Tohda K, Gratzl M. Micro-miniature autonomous optical sensor array for monitoring ions and metabolites 2: color responses to pH, K+ and glucose. Anal Sci 2006;22:937–941CrossRefPubMedGoogle Scholar
  16. 16.
    Feldstein MJ, Golden JP, Rowe CA, Mac-craith BD, Ligler FS. Array biosensor: optical and fluidics systems. Biomedical Microde-vices 1999;1:139–153CrossRefGoogle Scholar
  17. 17.
    Sohn YS, Goodey A, Anslyn EV, McDevitt JT, Shear JB, Neikirk DP. A microbead array chemical sensor using capillary-based sample introduction: toward the development of an “electronic tongue”. Biosens Bioelectron 2005;21:303–312CrossRefPubMedGoogle Scholar
  18. 18.
    Knecht BG, Strasser A, Dietrich R, Martl-bauer E, Niessner R, Weller MG. Automated microarray system for the simultaneous detection of antibiotics in milk. Anal Chem 2004;76:646–654CrossRefPubMedGoogle Scholar
  19. 19.
    Sapsford KE, Taitt CR, Loo N, Ligler FS. Biosensor detection of botulinum toxoid A and staphylococcal enterotoxin B in food. Appl Environ Microbiol 2005;71:5590–5592CrossRefPubMedGoogle Scholar
  20. 20.
    Golden JP, Floyd-Smith TM, Mott DR, Ligler FS. Target delivery in a microflu-idic immunosensor. Biosens Bioelectron 2007;22:2763–2767CrossRefPubMedGoogle Scholar
  21. 21.
    Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T, Scherer A. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat Mater 2004;3:601–605CrossRefPubMedGoogle Scholar
  22. 22.
    Schaferling M, Wu M, Enderlein J, Bauer H, Wolfbeis OS. Time-resolved luminescence imaging of hydrogen peroxide using sensor membranes in a microwell format. Appl Spectroscopy 2003;57:1386–1392CrossRefGoogle Scholar
  23. 23.
    D'Auria S, Lakowicz JR. Enzyme fluorescence as a sensing tool: new perspectives in biotechnology. Curr Opin Biotechnol 2001;12:99–104CrossRefPubMedGoogle Scholar
  24. 24.
    Vo-Dinh T, Alarie JP, Isola N, Landis D, Wintenberg AL, Ericson MN. DNA biochip using a phototransistor integrated circuit. Anal Chem 1999;71:358–363CrossRefPubMedGoogle Scholar
  25. 25.
    Higgins JA, Nasarabadi S, Karns JS, et al. A handheld real time thermal cycler for bacterial pathogen detection. Biosens Bioelectron 2003;18:1115–1123CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Yordan Kostov
    • 1
  • Nikolay Sergeev
    • 2
  • Sean Wilson
    • 1
  • Keith E. Herold
    • 3
  • Avraham Rasooly
    • 2
  1. 1.Center for Advanced Sensor TechnologyUniversity of Maryland Baltimore County (UMBC)BaltimoreUSA
  2. 2.FDA Center for Devices and Radiological HealthSilver SpringUSA
  3. 3.Fischell Department of BioengineeringUniversity of MarylandCollege ParkUSA

Personalised recommendations