Advertisement

Label-Free Serodiagnosis on a Grating Coupler

  • Thomas Nagel
  • Ehrentreich-Förster Eva
  • Frank F. Bier
Part of the Methods in Molecular Biology™ book series (MIMB, volume 503)

Summary

The unique feature of the label-free measurement techniques for screening specific binding molecules against a certain ligand is that knowledge about the analyte is not required. Due to the direct monitoring of the binding event, no further detection step, e.g., by a fluorescently labeled antibody, is necessary. This technique enables not only the analysis of binding properties, but also applications in serodiagnosis and in primary screening in drug discovery. Especially when complex biological solutions such as blood serum are used as sample fluids, the minimization of unspecific attachment is the crucial point of the assay. In this chapter, the basic handling of the grating coupler as an example of a label-free transducer is described, together with a simple protocol to minimize unspecific attachment when measuring undiluted blood serum.

Key words

Label-free detection Grating coupler Blood serum Serodiagnosis Passivation of glass surfaces Protein coupling 

References

  1. 1.
    Gauglitz, G. (2005) Direct optical sensors: principles and selected applications. Anal Bioanal Chem. 381,141–155CrossRefPubMedGoogle Scholar
  2. 2.
    Tiefenthaler, K. and Lukosz, W. (1989) Sensitivity of grating couplers as integrated-optical chemical sensors. J Opt Soc Am B. 6, 209–220CrossRefGoogle Scholar
  3. 3.
    Comley, J. (2005) Label-free detection–new biosensors facilitate broader range of drug discovery applications. Drug Discovery World, Winter 2004/5, 63–74Google Scholar
  4. 4.
    Cooper, M. A. (2006) Current biosensor technologies in drug discovery. Drug Discovery World, Summer 2006, 68–82Google Scholar
  5. 5.
    Brynda, E., Houska, M., Brandenburg, A. and Wikerstal, A. (2002) Optical biosensors for real-time measurement of analytes in blood plasma. Biosens Bioelectron. 17, 665–675CrossRefPubMedGoogle Scholar
  6. 6.
    Nagel, T., Ehrentreich-Förster, E., Singh, M., Schmitt, K., Brandenburg, A., Berka, A., Bier, F. F. (2008) Direct detection of tuberculosis infection in blood serum using three optical label-free approaches. Sens Actuators B: Chem. 129, 934–940CrossRefGoogle Scholar
  7. 7.
    Ehrentreich-Förster, E., Scheller, F. W. and Bier, F. F. (2003) Detection of progesterone in whole blood samples. Biosens Bioelectron. 18, 375–380CrossRefGoogle Scholar
  8. 8.
    Nellen, P. M. and Lukosz, W. (1990) Integrated optical input grating couplers as chemo- and immunosensors. Sens Actuators B. 1, 592–596CrossRefGoogle Scholar
  9. 9.
    Nellen, P. M. and Lukosz, W. (1991) Model experiments with integrated optical input grating couplers as direct immunosensors. Biosens Bioelectron. 6, 517–525CrossRefPubMedGoogle Scholar
  10. 10.
    Lukosz, W., Nellen, P. M., Stamm, C. and Weiss, P. (1990) Output grating couplers on planar waveguides as integrated optical chemical sensors. Sens Actuators B. 1, 585–588CrossRefGoogle Scholar
  11. 11.
    Lukosz, W., Clerc, D., Nellen, P. M., Stamm, C. and Weiss, P. (1991) Output grating couplers on planar optical waveguides as direct immu-nosensors. Biosens Bioelectron. 6, 227–232CrossRefPubMedGoogle Scholar
  12. 12.
    Clerc, D. and Lukosz, W. (1994) Integrated optical output grating coupler as biochemical sensor. Sens Actuators B. 19, 581–586CrossRefGoogle Scholar
  13. 13.
    Brandenburg, A., Polzius, R., Bier, F. F., Bilitewski, U. and Wagner, E. (1996) Direct observation of affinity reactions by reflected-mode operation of integrated optical grating coupler. Sens Actuators B. 30, 55–59CrossRefGoogle Scholar
  14. 14.
    Billitewski, U., Bier, F. F. and Brandenburg, A. (1998) Immunobiosensors based on grating couplers, in (Rogers, K. R. and Mulchan-dani, A., ed.) Methods in BiotechnologyVol. 7, Humana Press, Totowa, NJ, pp. 121–134Google Scholar
  15. 15.
    Clerc, D. and Lukosz, W. (1997) Direct immunosensing with an integrated-optical output grating coupler. Sens Actuators B. 40, 53–58CrossRefGoogle Scholar
  16. 16.
    Hermanson, G. T. (ed.) (1996) Bioconjugate Techniques. Academic Press, San Diego, CAGoogle Scholar
  17. 17.
    Aslan, M. (ed.) (1998) Bioconjugation: Protein Coupling Techniques for the Biomedical Sciences. Stockton Press, LondonGoogle Scholar
  18. 18.
    Heise, C. and Bier, F. F. (2005) Immobilization of DNA on microarrays, in (Wittmann, C., ed.) Topics in Current Chemistry: Immobilisation of DNA on Chips II, Springer, Berlin Heidelberg, pp. 1–25Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Thomas Nagel
    • 1
    • 2
  • Ehrentreich-Förster Eva
    • 1
  • Frank F. Bier
    • 1
    • 2
  1. 1.Department of Molecular Bioanalytics & BioelectronicsFraunhofer Institute for Biomedical Engineering, Branch Potsdam-GolmPotsdamGermany
  2. 2.Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany

Personalised recommendations