Skip to main content

Molecular Phylogenetics: Testing Evolutionary Hypotheses

  • Protocol
Bacteriophages

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 502))

Abstract

A common approach for investigating evolutionary relationships between genes and organisms is to compare extant DNA or protein sequences and infer an evolutionary tree. This methodology is known as molecular phylogenetics and may be the most informative means for exploring phage evolution, since there are few morphological features that can be used to differentiate between these tiny biological entities. In addition, phage genomes can be mosaic, meaning different genes or genomic regions can exhibit conflicting evolutionary histories due to lateral gene transfer or homologous recombination between different phage genomes. Molecular phylogenetics can be used to identify and study such genome mosaicism. This chapter provides a general introduction to the theory and methodology used to reconstruct phylogenetic relationships from molecular data. Also included is a discussion on how the evolutionary history of different genes within the same set of genomes can be compared, using a collection of T4-type phage genomes as an example. A compilation of programs and packages that are available for conducting phylogenetic analyses is supplied as an accompanying appendix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilhelm, S.W. and C.A. Suttle. 1999. Viruses and nutrient sycles in the sea. Bioscience 49:781–788.

    Article  Google Scholar 

  2. Edwards, R.A. and F. Rohwer. 2005. Viral metagenomics. Nat Rev Microbiol 3:504–510.

    Article  CAS  PubMed  Google Scholar 

  3. Tetart, F., C. Desplats, M. Kutateladze, C. Monod, H.W. Ackermann, and H.M. Krisch. 2001. Phylogeny of the major head and tail genes of the wide-ranging T4-type bacteriophages. J Bacteriol 183:358–366.

    Article  CAS  PubMed  Google Scholar 

  4. Filee, J., F. Tetart, C.A. Suttle, and H.M. Krisch. 2005. Marine T4-type bacteriophages, a ubiquitous component of the dark matter of the biosphere. Proc Natl Acad Sci U S A 102:12471–12476.

    Article  CAS  PubMed  Google Scholar 

  5. Short, C.M. and C.A. Suttle. 2005. Nearly identical bacteriophage structural gene sequences are widely distributed in both marine and freshwater environments. Appl Environ Microbiol 71:480–486.

    Article  CAS  PubMed  Google Scholar 

  6. Lawrence, J.G., G.F. Hatfull, and R.W. Hendrix. 2002. Imbroglios of viral taxonomy: genetic exchange and failings of phenetic approaches. J Bacteriol 184:4891–4905.

    Article  CAS  PubMed  Google Scholar 

  7. Rohwer, F. and R. Edwards. 2002. The Phage Proteomic Tree: a genome-based taxonomy for phage. J Bacteriol 184:4529–4535.

    Article  CAS  PubMed  Google Scholar 

  8. Gogarten, J.P. and J.P. Townsend. 2005. Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol 3: 679–687.

    Article  CAS  PubMed  Google Scholar 

  9. Boucher, Y., C.J. Douady, R.T. Papke, D.A. Walsh, M.E. Boudreau, C.L. Nesbo, R.J. Case, and W.F. Doolittle. 2003. Lateral gene transfer and the origins of prokaryotic groups. Annu Rev Genet 37:283–328.

    Article  CAS  PubMed  Google Scholar 

  10. Feil, E.J. and B.G. Spratt. 2001. Recombination and the population structures of bacterial pathogens. Annu Rev Microbiol 55:561–590.

    Article  CAS  PubMed  Google Scholar 

  11. Hanage, W.P., C. Fraser, and B.G. Spratt. 2005. The impact of homologous recombination on the generation of diversity in bacteria. J Theor Biol.

    Google Scholar 

  12. Papke, R.T., J.E. Koenig, F. Rodriguez-Valera, and W.F. Doolittle. 2004. Frequent recombination in a saltern population of Halorubrum. Science 306:1928–1929.

    CAS  PubMed  Google Scholar 

  13. Casjens, S.R. 2005. Comparative genomics and evolution of the tailed-bacteriophages. Curr Opin Microbiol 8:451–458.

    Article  CAS  PubMed  Google Scholar 

  14. Pedulla, M.L., M.E. Ford, J.M. Houtz, T. Karthikeyan, C. Wadsworth, J.A. Lewis, D. Jacobs-Sera, J. Falbo, et al. 2003. Origins of highly mosaic mycobacteriophage genomes. Cell 113:171–182.

    Article  CAS  PubMed  Google Scholar 

  15. Hendrix, R.W. 2002. Bacteriophages: evolution of the majority. Theor Popul Biol 61:471–480.

    Article  PubMed  Google Scholar 

  16. Mann, N.H., A. Cook, A. Millard, S. Bailey, and M. Clokie. 2003. Marine ecosystems: bacterial photosynthesis genes in a virus. Nature 424:741.

    Article  CAS  PubMed  Google Scholar 

  17. Lindell, D., M.B. Sullivan, Z.I. Johnson, A.C. Tolonen, F. Rohwer, and S.W. Chisholm. 2004. Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proc Natl Acad Sci U S A 101:11013–11018.

    Article  CAS  PubMed  Google Scholar 

  18. Zeidner, G., J.P. Bielawski, M. Shmoish, D.J. Scanlan, G. Sabehi, and O. Beja. 2005. Potential photosynthesis gene recombination between Prochlorococcus and Synechococcus via viral intermediates. Environ Microbiol 7:1505–1513.

    Article  CAS  PubMed  Google Scholar 

  19. Orengo, C.A., D.T. Jones, and J.M. Thorntom. 2003. Bioinformatics: Genes, Proteins & Computers. BIOS Scientific Publishers Ltd., Oxford.

    Google Scholar 

  20. Schuler, G.D. 1998. Sequence Alignment and Database Searching, p. 145–171. In A.D. Baxevanis, and B.F.F. Ouellette (Eds.), Bioinformatics: A practical Guide to the Analysis of Genes and Proteins. John Wiley & Sons, Inc., New York.

    Google Scholar 

  21. Bapteste, E., H. Brinkmann, J.A. Lee, D.V. Moore, C.W. Sensen, P. Gordon, L. Durufle, T. Gaasterland, et al. 2002. The analysis of 100 genes supports the grouping of three highly divergent amoebae: Dictyostelium, Entamoeba, and Mastigamoeba. Proc Natl Acad Sci U S A 99:1414–1419.

    Article  CAS  PubMed  Google Scholar 

  22. Walsh, D.A., E. Bapteste, M. Kamekura, and W.F. Doolittle. 2004. Evolution of the RNA polymerase \(\mathrm{B}^{\prime}\) subunit gene \((\mathrm{rpoB}^{\prime})\) in Halobacteriales: a complementary molecular marker to the SSU rRNA gene. Mol Biol Evol 21:2340–2351.

    Article  CAS  PubMed  Google Scholar 

  23. Walsh, D.A., R.T. Papke, and W.F. Doolittle. 2005. Archaeal diversity along a soil salinity gradient prone to disturbance. Environ Microbiol 7:1655–1666.

    Article  CAS  PubMed  Google Scholar 

  24. Huelsenbeck, J.P., B. Larget, R.E. Miller, and F. Ronquist. 2002. Potential applications and pitfalls of Bayesian inference of phylogeny. Syst Biol 51:673–688.

    Article  PubMed  Google Scholar 

  25. Yang, Z. 1996. Phylogenetic analysis using parsimony and likelihood methods. J Mol Evol 42:294–307.

    Article  CAS  PubMed  Google Scholar 

  26. Spencer, M., E. Susko, and A.J. Roger. 2005. Likelihood, parsimony, and heterogeneous evolution. Mol Biol Evol 22:1161–1164.

    Article  CAS  PubMed  Google Scholar 

  27. Swofford, D.L., G.J. Olsen, P.J. Waddell, and D.M. Hillis. 1996. Phylogenetic Inference, p. 407–514. In D.M. Hillis, C. Moritz, and M. B.K. (Eds.), Molecular Systematics. Sinauer Associates Inc., Sunderland.

    Google Scholar 

  28. Sokal, R.R. and C.D. Michener. 1958. A statistical method for evaluating systematic relationships. University of Kansas Science Bulletin 38:1409–1438.

    Google Scholar 

  29. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425.

    CAS  PubMed  Google Scholar 

  30. Page, R.D.M. and E.C. Holmes. 1998. Molecular Evolution: A Phylogenetic Approach. Blackwell Science Inc., Malden.

    Google Scholar 

  31. Gascuel, O. 1997. BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14:685–695.

    CAS  PubMed  Google Scholar 

  32. Bruno, W.J., N.D. Socci, and A.L. Halpern. 2000. Weighted neighbor joining: a likelihood-based approach to distance-based phylogeny reconstruction. Mol Biol Evol 17:189–197.

    CAS  PubMed  Google Scholar 

  33. Hollich, V., L. Milchert, L. Arvestad, and E.L. Sonnhammer. 2005. Assessment of Protein Distance Measures and Tree-Building Methods for Phylogenetic Tree Reconstruction. Mol Biol Evol 22:2257–2264.

    Article  CAS  PubMed  Google Scholar 

  34. Rzhetsky, A. and M. Nei. 1992. Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. J Mol Evol 35:367–375.

    Article  CAS  PubMed  Google Scholar 

  35. Nei, M. and S. Kumar. 2000. Molecular Evolution and Phylogenetics. Oxford University Press, Inc., Oxford.

    Google Scholar 

  36. Fitch, W.M. and E. Margoliash. 1967. Construction of phylogenetic trees. Science 155:279–284.

    Article  CAS  PubMed  Google Scholar 

  37. Felsenstein, J. 2004. Inferring Phylogenies. Sinauer Associates, Inc, Sunderland.

    Google Scholar 

  38. Felsenstein, J. 1978. Cases in which parsimony or compatibility methods will be positively misleading. Systematic Zoology 27:401–410.

    Article  Google Scholar 

  39. Kishino, H., T. Miyata, and M. Hasegawa. 1990. Maximum likelihood inference of protein phylogeny and the origin of chloroplasts. J Mol Evol 31:151–160.

    Article  CAS  Google Scholar 

  40. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376.

    Article  CAS  PubMed  Google Scholar 

  41. Miller, E.S., J.F. Heidelberg, J.A. Eisen, W.C. Nelson, A.S. Durkin, A. Ciecko, T.V. Feldblyum, O. White, et al. 2003. Complete genome sequence of the broad-host-range vibriophage KVP40: comparative genomics of a T4-related bacteriophage. J Bacteriol 185:5220–5233.

    Article  CAS  PubMed  Google Scholar 

  42. Susko, E., Y. Inagaki, and A.J. Roger. 2004. On inconsistency of the neighbor-joining, least squares, and minimum evolution estimation when substitution processes are incorrectly modeled. Mol Biol Evol 21:1629–1642.

    Article  CAS  PubMed  Google Scholar 

  43. Lio, P. and N. Goldman. 1998. Models of molecular evolution and phylogeny. Genome Res 8:1233–1244.

    CAS  PubMed  Google Scholar 

  44. Posada, D. and K.A. Crandall. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818.

    Article  CAS  PubMed  Google Scholar 

  45. Dayhoff, M.O., R.M. Schwartz, and B.C. Orcutt. 1978. A model of evolutionary change in proteins., p. 345–358. In M.O. Dayhoff (Ed.), Atlas of Protein Sequence and Structure 5. National Biomedical Research Foundation, Washington.

    Google Scholar 

  46. Jones, D.T., W.R. Taylor, and Thornton. 1992. The rapid generation of mutation data matrices from protein sequences. Comp Appl Biosci 8:275–282.

    CAS  PubMed  Google Scholar 

  47. Veerassamy, S., A. Smith, and E.R. Tillier. 2003. A transition probability model for amino acid substitutions from blocks. J Comput Biol 10:997–1010.

    Article  CAS  PubMed  Google Scholar 

  48. Whelan, S. and N. Goldman. 2001. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691–699.

    CAS  PubMed  Google Scholar 

  49. Yang, Z. 1993. Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Mol Biol Evol 10:1396–1401.

    CAS  PubMed  Google Scholar 

  50. Yang, Z. 1994. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol 39:306–314.

    Article  CAS  PubMed  Google Scholar 

  51. Gribaldo, S. and H. Philippe. 2002. Ancient phylogenetic relationships. Theor Popul Biol 61:391–408.

    Article  PubMed  Google Scholar 

  52. Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783–791.

    Article  Google Scholar 

  53. Kishino, H. and M. Hasegawa. 1989. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol 29:170–179.

    Article  CAS  PubMed  Google Scholar 

  54. Shimodaira, H. and M. Hasegawa. 1999. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16:1114–1116.

    CAS  Google Scholar 

  55. Goldman, N., J.P. Anderson, and A.G. Rodrigo. 2000. Likelihood-based tests of topologies in phylogenetics. Syst Biol 49:652–670.

    Article  CAS  PubMed  Google Scholar 

  56. Strimmer, K. and A. Rambaut. 2002. Inferring confidence sets of possibly misspecified gene trees. Proc Biol Sci 269:137–142.

    Article  PubMed  Google Scholar 

  57. Shimodaira, H. 2002. An approximately unbiased test of phylogenetic tree selection. Syst Biol 51:492–508.

    Article  PubMed  Google Scholar 

  58. Vossbrinck, C.R., J.V. Maddox, S. Friedman, B.A. Debrunner-Vossbrinck, and C.R. Woese. 1987. Ribosomal RNA sequence suggests microsporidia are extremely ancient eukaryotes. Nature 326:411–414.

    Article  CAS  PubMed  Google Scholar 

  59. Kamaishi, T., T. Hashimoto, Y. Nakamura, F. Nakamura, S. Murata, N. Okada, K. Okamoto, M. Shimizu, and M. Hasegawa. 1996. Protein phylogeny of translation elongation factor EF-1 alpha suggests microsporidians are extremely ancient eukaryotes. J Mol Evol 42:257–263.

    Article  CAS  PubMed  Google Scholar 

  60. Keeling, P.J. and W.F. Doolittle. 1996. Alpha-tubulin from early-diverging eukaryotic lineages and the evolution of the tubulin family. Mol Biol Evol 13:1297–1305.

    CAS  PubMed  Google Scholar 

  61. Keeling, P.J., M.A. Luker, and J.D. Palmer. 2000. Evidence from beta-tubulin phylogeny that microsporidia evolved from within the fungi. Mol Biol Evol 17:23–31.

    CAS  PubMed  Google Scholar 

  62. Inagaki, Y., E. Susko, N.M. Fast, and A.J. Roger. 2004. Covarion shifts cause a long-branch attraction artifact that unites microsporidia and archaebacteria in EF-1alpha phylogenies. Mol Biol Evol 21:1340–1349.

    Article  CAS  PubMed  Google Scholar 

  63. Brinkmann, H., M. van der Giezen, Y. Zhou, G. Poncelin de Raucourt, and H. Philippe. 2005. An empirical assessment of long-branch attraction artefacts in deep eukaryotic phylogenomics. Syst Biol 54:743–757.

    Article  PubMed  Google Scholar 

  64. Huelsenbeck, J.P. 1995. The robustness of two phylogenetic methods: four-taxon simulations reveal a slight superiority of maximum likelihood over neighbor joining. Mol Biol Evol 12:843–849.

    CAS  PubMed  Google Scholar 

  65. Kuhner, M.K. and J. Felsenstein. 1994. A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. Mol Biol Evol 11:459–468.

    CAS  PubMed  Google Scholar 

  66. Gaut, B.S. and P.O. Lewis. 1995. Success of maximum likelihood phylogeny inference in the four-taxon case. Mol Biol Evol 12:152–162.

    CAS  PubMed  Google Scholar 

  67. Swofford, D.L., P.J. Waddell, J.P. Huelsenbeck, P.G. Foster, P.O. Lewis, and J.S. Rogers. 2001. Bias in phylogenetic estimation and its relevance to the choice between parsimony and likelihood methods. Syst Biol 50:525–539.

    Article  CAS  PubMed  Google Scholar 

  68. Whelan, S., P. Lio, and N. Goldman. 2001. Molecular phylogenetics: state-of-the-art methods for looking into the past. Trends Genet 17:262–272.

    Article  CAS  PubMed  Google Scholar 

  69. Philippe, H., Y. Zhou, H. Brinkmann, N. Rodrigue, and F. Delsuc. 2005. Heterotachy and long-branch attraction in phylogenetics. BMC Evol Biol 5:50.

    Article  PubMed  Google Scholar 

  70. Ruiz-Trillo, I., M. Riutort, D.T. Littlewood, E.A. Herniou, and J. Baguna. 1999. Acoel flatworms: earliest extant bilaterian Metazoans, not members of Platyhelminthes. Science 283:1919–1923.

    Article  CAS  PubMed  Google Scholar 

  71. Ruiz-Trillo, I., J. Paps, M. Loukota, C. Ribera, U. Jondelius, J. Baguna, and M. Riutort. 2002. A phylogenetic analysis of myosin heavy chain type II sequences corroborates that Acoela and Nemertodermatida are basal bilaterians. Proc Natl Acad Sci U S A 99:11246–11251.

    Article  CAS  PubMed  Google Scholar 

  72. Dacks, J.B., J.D. Silberman, A.G. Simpson, S. Moriya, T. Kudo, M. Ohkuma, and R.J. Redfield. 2001. Oxymonads are closely related to the excavate taxon Trimastix. Mol Biol Evol 18:1034–1044.

    CAS  PubMed  Google Scholar 

  73. Anderson, F.E. and D.L. Swofford. 2004. Should we be worried about long-branch attraction in real data sets? Investigations using metazoan 18S rDNA. Mol Phylogenet Evol 33:440–451.

    Article  CAS  PubMed  Google Scholar 

  74. Lin, Y.H., P.A. McLenachan, A.R. Gore, M.J. Phillips, R. Ota, M.D. Hendy, and D. Penny. 2002. Four new mitochondrial genomes and the increased stability of evolutionary trees of mammals from improved taxon sampling. Mol Biol Evol 19:2060–2070.

    CAS  PubMed  Google Scholar 

  75. Beiko, R.G., T.J. Harlow, and M.A. Ragan. 2005. Highways of gene sharing in prokaryotes. Proc Natl Acad Sci U S A 102:14332–14337.

    Article  CAS  PubMed  Google Scholar 

  76. Kunin, V., L. Goldovsky, N. Darzentas, and C.A. Ouzounis. 2005. The net of life: reconstructing the microbial phylogenetic network. Genome Res 15:954–959.

    Article  CAS  PubMed  Google Scholar 

  77. Bapteste, E., Y. Boucher, J. Leigh, and W.F. Doolittle. 2004. Phylogenetic reconstruction and lateral gene transfer. Trends Microbiol 12:406–411.

    Article  CAS  PubMed  Google Scholar 

  78. Bapteste, E., E. Susko, J. Leigh, D. MacLeod, R.L. Charlebois, and W.F. Doolittle. 2005. Do orthologous gene phylogenies really support tree-thinking? BMC Evol Biol 5:33.

    Article  CAS  PubMed  Google Scholar 

  79. Gordon, A. 1999. Classification.

    Google Scholar 

  80. Brochier, C., E. Bapteste, D. Moreira, and H. Philippe. 2002. Eubacterial phylogeny based on translational apparatus proteins. Trends Genet 18:1–5.

    Article  CAS  PubMed  Google Scholar 

  81. Brochier, C., P. Forterre, and S. Gribaldo. 2005. An emerging phylogenetic core of Archaea: phylogenies of transcription and translation machineries converge following addition of new genome sequences. BMC Evol Biol 5:36.

    Article  PubMed  Google Scholar 

  82. Moreira, D., H. Le Guyader, and H. Philippe. 2000. The origin of red algae and the evolution of chloroplasts. Nature 405:69–72.

    Article  CAS  PubMed  Google Scholar 

  83. Baldauf, S.L., A.J. Roger, I. Wenk-Siefert, and W.F. Doolittle. 2000. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290:972–977.

    Article  CAS  PubMed  Google Scholar 

  84. Zhaxybayeva, O., P. Lapierre, and J.P. Gogarten. 2004. Genome mosaicism and organismal lineages. Trends Genet 20:254–260.

    Article  CAS  PubMed  Google Scholar 

  85. MacLeod, D., R.L. Charlebois, F. Doolittle, and E. Bapteste. 2005. Deduction of probable events of lateral gene transfer through comparison of phylogenetic trees by recursive consolidation and rearrangement. BMC Evol Biol 5:27.

    Article  PubMed  Google Scholar 

  86. Hudson, D.H. and D. Bryant. 2005. Applications of Phylogenetic Networks in Evolutionary Studies. Mol Biol Evol On line early.

    Google Scholar 

  87. Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgins. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882.

    Article  CAS  PubMed  Google Scholar 

  88. Maddison, D.R. and W.P. Maddison. 2003. MacClade 4. Sinauer Associates, Inc., Sunderland.

    Google Scholar 

  89. Felsenstein, J. 2004. PHYLIP: Phylogeny Inference Package Version 3.6.

    Google Scholar 

  90. Graur, D. and W. Li. 2000. Fundamentals of Molecular Evolution. Sinauer Associates Inc., Sunderland.

    Google Scholar 

  91. Guindon, S., F. Lethiec, P. Duroux, and O. Gascuel. 2005. PHYML Online – a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res 33: W557–559.

    Article  CAS  PubMed  Google Scholar 

  92. Schmidt, H.A., K. Strimmer, M. Vingron, and A. von Haeseler. 2002. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504.

    Article  CAS  PubMed  Google Scholar 

  93. Swofford, D.L. 1998. PAUP\(^{\ast}\): phylogenetic analysis using parsimony. Sinauer Associates, Inc., Sunderland.

    Google Scholar 

  94. Yang, Z. 1997. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556.

    CAS  PubMed  Google Scholar 

  95. Adachi, J. and M. Hasegawa. 1996. MOLPHY version 2.3: programs for molecular phylogenetics based on maximum likelihood. Computer Science Monographs 28.

    Google Scholar 

  96. Shimodaira, H. and M. Hasegawa. 2001. CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17:1246–1247.

    Article  CAS  PubMed  Google Scholar 

  97. Page, R.D.M. 1996. TREEVIEW: An application to display phylogenetic trees on personal computers. Comp Appl Biosci 12:357–358.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Walsh, D.A., Sharma, A.K. (2009). Molecular Phylogenetics: Testing Evolutionary Hypotheses. In: Clokie, M.R., Kropinski, A.M. (eds) Bacteriophages. Methods in Molecular Biology™, vol 502. Humana Press. https://doi.org/10.1007/978-1-60327-565-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-565-1_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-564-4

  • Online ISBN: 978-1-60327-565-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics