Skip to main content

Determining DNA Packaging Strategy by Analysis of the Termini of the Chromosomes in Tailed-Bacteriophage Virions

  • Protocol
Bacteriophages

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 502))

Abstract

Tailed-bacteriophage virions contain a single linear dsDNA chromosome which can range in size from about 18 to 500 kbp across the known tailed-phage types. These linear chromosomes can have one of several known types of termini as follows: cohesive ends (\(5^{\prime}\)- or \(3^{\prime}\)-single-strand extensions), circularly permuted direct terminal repeats, short or long exact direct terminal repeats, terminal host DNA sequences, or covalently bound terminal proteins. These different types of ends reflect differing DNA replication strategies and especially differing terminase actions during DNA packaging. In general, complete genome sequence determination does not by itself elucidate the nature of these ends, so directed experimental analysis is usually required to understand the nature of the virion chromosome ends. This chapter discusses these methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mousset, S. & Thomas, R. (1969) Ter, a function which generates the ends of the mature lambda chromosome. Nature 221, 242–244.

    Article  CAS  PubMed  Google Scholar 

  2. Feiss, M. & Campbell, A. (1974) Duplication of the bacteriophage lambda cohesive end site: genetic studies. J. Mol. Biol. 83, 527–540.

    Article  CAS  PubMed  Google Scholar 

  3. Jackson, E. N., Jackson, D. A. & Deans, R. J. (1978) EcoRI analysis of bacteriophage P22 DNA packaging. J. Mol. Biol. 118, 365–388.

    Article  CAS  PubMed  Google Scholar 

  4. Emmons, S. W. (1974) Bacteriophage lambda derivatives carrying two copies of the cohesive end site. J. Mol. Biol. 83, 511–525.

    Article  CAS  PubMed  Google Scholar 

  5. Adams, M. B., Hayden, M. & Casjens, S. (1983) On the sequential packaging of bacteriophage P22 DNA. J. Virol. 46, 673–677.

    CAS  PubMed  Google Scholar 

  6. Simpson, A. A., Tao, Y., Leiman, P. G., Badasso, M. O., He, Y., Jardine, P. J., Olson, N. H., Morais, M. C., Grimes, S., Anderson, D. L., Baker, T. S. & Rossmann, M. G. (2000) Structure of the bacteriophage f29 DNA packaging motor. Nature 408, 745–750.

    Article  CAS  PubMed  Google Scholar 

  7. Hershey, A. D. & Burgi, E. (1965) Complementary structure of interacting sites at the ends of lambda DNA molecules. Proc. Natl. Acad. Sci. USA 53, 325–330.

    Article  CAS  PubMed  Google Scholar 

  8. Wu, R. & Taylor, E. (1971) Nucleotide sequence analysis of DNA. II. Complete nucleotide sequence of the cohesive ends of bacteriophage lambda DNA. J. Mol. Biol. 57, 491–511.

    Article  CAS  PubMed  Google Scholar 

  9. Ellis, D. M. & Dean, D. H. (1985) Nucleotide sequence of the cohesive single-stranded ends of Bacillus subtilis temperate bacteriophage f105. J. Virol. 55, 513–515.

    CAS  PubMed  Google Scholar 

  10. Padmanabhan, R., Wu, R. & Calendar, R. (1974) Complete nucleotide sequence of the cohesive ends of bacteriophage P2 deoxyribonucleic acid. J. Biol. Chem. 249, 6197–6207.

    CAS  PubMed  Google Scholar 

  11. Fitzmaurice, W. P., Waldman, A. S., Benjamin, R. C., Huang, P. C. & Scocca, J. J. (1984) Nucleotide sequence and properties of the cohesive DNA termini from bacteriophage HP1c1 of Haemophilus influenzae Rd. Gene 31, 197–203.

    Article  CAS  PubMed  Google Scholar 

  12. Juhala, R. J., Ford, M. E., Duda, R. L., Youlton, A., Hatfull, G. F. & Hendrix, R. W. (2000) Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. J. Mol. Biol. 299, 27–51.

    Article  CAS  PubMed  Google Scholar 

  13. Casjens, S. (2003) Prophages in bacterial genomics: What have we learned so far? Molec. Microbiol. 249, 277–300.

    Article  Google Scholar 

  14. Hatfull, G. F. & Sarkis, G. J. (1993) DNA sequence, structure and gene expression of mycobacteriophage L5: a phage system for mycobacterial genetics. Molec. Microbiol. 7, 395–405.

    Article  CAS  Google Scholar 

  15. Ford, M. E., Sarkis, G. J., Belanger, A. E., Hendrix, R. W. & Hatfull, G. F. (1998) Genome structure of mycobacteriophage D29: implications for phage evolution. J. Mol. Biol. 279, 143–164.

    Article  CAS  PubMed  Google Scholar 

  16. Lubbers, M., Ward, L., Beresford, T., Jarvis, B. & Jarvis, A. (1994) Sequencing and analysis of the cos region of the lactococcal bacteriophage c2. Mol. Gen. Genet. 245, 160–166.

    Article  CAS  PubMed  Google Scholar 

  17. van Sinderen, D., Karsens, H., Kok, J., Terpstra, P., Ruiters, M. H., Venema, G. & Nauta, A. (1996) Sequence analysis and molecular characterization of the temperate lactococcal bacteriophage r1t. Molec. Microbiol. 19, 1343–1355.

    Article  Google Scholar 

  18. Streisinger, G., Enrich, J. & Stahl, M. (1967) Chromosome structure in T4. III. Terminal redundancy and length determination. Proc. Natl’l. Acad. Sci., U.S.A. 57, 292–295.

    Article  CAS  Google Scholar 

  19. Wu, H., Sampson, L., Parr, R. & Casjens, S. (2002) The DNA site utilized by bacteriophage P22 for initiation of DNA packaging. Molec. Microbiol. 45, 1631–1646.

    Article  CAS  Google Scholar 

  20. Tye, B. K., Huberman, J. A. & Botstein, D. (1974) Non-random circular permutation of phage P22 DNA. J. Mol. Biol. 85, 501–528.

    Article  CAS  PubMed  Google Scholar 

  21. Moore, S. D. & Prevelige, P. E., Jr. (2002) Bacteriophage P22 portal vertex formation in vivo. J. Mol. Biol. 315, 975–994.

    Article  CAS  PubMed  Google Scholar 

  22. Weigele, P. R., Sampson, L., Winn-Stapley, D. & Casjens, S. R. (2005) Molecular genetics of bacteriophage P22 scaffolding protein’s functional domains. J. Mol. Biol. 348, 831–844.

    Article  CAS  PubMed  Google Scholar 

  23. Casjens, S. & Hayden, M. (1988) Analysis in vivo of the bacteriophage P22 headful nuclease. J. Mol. Biol. 199, 467–474.

    Article  CAS  PubMed  Google Scholar 

  24. Schmieger, H., Taleghani, K. M., Meierl, A. & Weiss, L. (1990) A molecular analysis of terminase cuts in headful packaging of Salmonella phage P22. Mol. Gen. Genet. 221, 199–202.

    Article  CAS  PubMed  Google Scholar 

  25. Chow, L. T. & Bukhari, A. I. (1978) Heteroduplex electron microscopy of phage Mu mutants containing IS1 insertions and chloramphenicol resistance transposons. Gene 3, 333–346.

    Article  CAS  PubMed  Google Scholar 

  26. Humphreys, G. O. & Trautner, T. A. (1981) Maturation of bacteriophage SPPI DNA: limited precision in the sizing of mature bacteriophage genomes. J. Virol. 37, 832–835.

    CAS  PubMed  Google Scholar 

  27. Casjens, S. & Huang, W. M. (1982) Initiation of sequential packaging of bacteriophage P22 DNA. J. Mol. Biol. 157, 287–298.

    Article  CAS  PubMed  Google Scholar 

  28. Deichelbohrer, I., Alonso, J. C., Luder, G. & Trautner, T. A. (1985) Plasmid transduction by Bacillus subtilis bacteriophage SPP1: effects of DNA homology between plasmid and bacteriophage. J. Bacteriol. 162, 1238–1243.

    CAS  PubMed  Google Scholar 

  29. Sternberg, N. & Coulby, J. (1987) Recognition and cleavage of the bacteriophage P1 packaging site (pac). II. Functional limits of pac and location of pac cleavage termini. J. Mol. Biol. 194, 469–479.

    Article  CAS  PubMed  Google Scholar 

  30. Casjens, S., Sampson, L., Randall, S., Eppler, K., Wu, H., Petri, J. B. & Schmieger, H. (1992) Molecular genetic analysis of bacteriophage P22 gene 3 product, a protein involved in the initiation of headful DNA packaging. J. Mol. Biol. 227, 1086–1099.

    Article  CAS  PubMed  Google Scholar 

  31. Casjens, S., Winn-Stapley, D., Gilcrease, E., Moreno, R., Kühlewein, C., Chua, J. E., Manning, P. A., Inwood, W. & Clark, A. J. (2004) The chromosome of Shigella flexneri bacteriophage Sf6: complete nucleotide sequence, genetic mosaicism, and DNA packaging. J. Mol. Biol. 339, 379–394.

    Article  CAS  PubMed  Google Scholar 

  32. Casjens, S. R., Gilcrease, E. B., Winn-Stapley, D. A., Schicklmaier, P., Schmieger, H., Pedulla, M. L., Ford, M. E., Houtz, J. M., Hatfull, G. F. & Hendrix, R. W. (2005) The generalized transducing Salmonella bacteriophage ES18: complete genome sequence and DNA packaging strategy. J. Bacteriol. 187, 1091–1104.

    Article  CAS  PubMed  Google Scholar 

  33. Chow, L. T. & Bukhari, A. I. (1977). Bacteriophage Mu genome: structural studies on Mu DNA and Mu mutants carrying insertions. In DNA insertion elements, plasmids, and episomes (Bukhari, A. I., Shapiro, J. A. & Adhya, S. L., eds.), pp. 295–306. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  34. Sternberg, N. (1986) The production of generalized transducing phage by bacteriophage lambda. Gene 50, 69–85.

    Article  CAS  PubMed  Google Scholar 

  35. Bachi, B. & Arber, W. (1977) Physical mapping of BglII, BamHI, EcoRI, HindIII and PstI restriction fragments of bacteriophage P1 DNA. Mol. Gen. Genet. 153, 311–324.

    Article  CAS  PubMed  Google Scholar 

  36. Lin, H. & Black, L. W. (1998) DNA requirements in vivo for phage T4 packaging. Virology 242, 118–127.

    Article  CAS  PubMed  Google Scholar 

  37. Obregon, V., Garcia, J. L., Garcia, E., Lopez, R. & Garcia, P. (2004) Peculiarities of the DNA of MM1, a temperate phage of Streptococcus pneumoniae. Int. Microbiol. 7, 133–137.

    CAS  Google Scholar 

  38. Loessner, M. J., Inman, R. B., Lauer, P. & Calendar, R. (2000) Complete nucleotide sequence, molecular analysis and genome structure of bacteriophage A118 of Listeria monocytogenes: implications for phage evolution. Molec. Microbiol. 35, 324–340.

    Article  CAS  Google Scholar 

  39. Plunkett, G., 3rd, Rose, D. J., Durfee, T. J. & Blattner, F. R. (1999) Sequence of Shiga toxin 2 phage 933 W from Escherichia coli O157:H7: Shiga toxin as a phage late-gene product. J. Bacteriol. 181, 1767–1778.

    CAS  PubMed  Google Scholar 

  40. Chung, Y. B., Nardone, C. & Hinkle, D. C. (1990) Bacteriophage T7 DNA packaging. III. A “hairpin” end formed on T7 concatemers may be an intermediate in the processing reaction. J. Mol. Biol. 216, 939–948.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, X. & Studier, F. W. (2004) Multiple roles of T7 RNA polymerase and T7 lysozyme during bacteriophage T7 infection. J. Mol. Biol. 340, 707–730.

    Article  CAS  PubMed  Google Scholar 

  42. Dunn, J. & Studier, W. (1983) Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J. Mol. Biol. 166, 477–535.

    Article  CAS  PubMed  Google Scholar 

  43. Dobbins, A. T., George, M., Jr., Basham, D. A., Ford, M. E., Houtz, J. M., Pedulla, M. L., Lawrence, J. G., Hatfull, G. F. & Hendrix, R. W. (2004) Complete genomic sequence of the virulent Salmonella bacteriophage SP6. J. Bacteriol. 186, 1933–1944.

    Article  CAS  PubMed  Google Scholar 

  44. Scholl, D., Kieleczawa, J., Kemp, P., Rush, J., Richardson, C. C., Merril, C., Adhya, S. & Molineux, I. J. (2004) Genomic analysis of bacteriophages SP6 and K1-5, an estranged subgroup of the T7 supergroup. J. Mol. Biol. 335, 1151–1171.

    Article  CAS  PubMed  Google Scholar 

  45. Wang, J., Jiang, Y., Vincent, M., Sun, Y., Yu, H., Wang, J., Bao, Q., Kong, H. & Hu, S. (2005) Complete genome sequence of bacteriophage T5. Virology 332, 45–65.

    Article  CAS  PubMed  Google Scholar 

  46. Fischhoff, D., MacNeil, D. & Kleckner, N. (1976) Terminal redundancy heterozygotes involving the first-step-transfer region of the bacteriophage T5 chromosome. Genetics 82, 145–159.

    CAS  PubMed  Google Scholar 

  47. Cregg, J. M. & Stewart, C. R. (1978) Terminal redundancy of “high frequency of recombination” markers of Bacillus subtilis phage SPO1. Virology 86, 530–541.

    Article  CAS  PubMed  Google Scholar 

  48. Rhoades, M. & Rhoades, E. A. (1972) Terminal repetition in the DNA of bacteriophage T5. J. Mol. Biol. 69, 187–200.

    Article  CAS  PubMed  Google Scholar 

  49. Perkus, M. E. & Shub, D. A. (1985) Mapping the genes in the terminal redundancy of bacteriophage SPO1 with restriction endonucleases. J. Virol. 56, 40–48.

    CAS  PubMed  Google Scholar 

  50. Wiest, J. S. & McCorquodale, D. J. (1990) Characterization of pre-early genes in the terminal repetition of bacteriophage BF23 DNA by nucleotide sequencing and restriction mapping. Virology 177, 745–754.

    Article  CAS  PubMed  Google Scholar 

  51. Panganiban, A. T. & Whiteley, H. R. (1983) Bacillus subtilis RNAase III cleavage sites in phage SP82 early mRNA. Cell 33, 907–913.

    Article  CAS  PubMed  Google Scholar 

  52. George, M. & Bukhari, A. I. (1981) Heterogeneous host DNA attached to the left end of mature bacteriophage Mu DNA. Nature 292, 175–176.

    Article  CAS  PubMed  Google Scholar 

  53. Groenen, M. A. & van de Putte, P. (1985) Mapping of a site for packaging of bacteriophage Mu DNA. Virology 144, 520–522.

    Article  CAS  PubMed  Google Scholar 

  54. Bukhari, A. I. & Taylor, A. L. (1975) Influence of insertions on packaging of host sequences covalently linked to bacteriophage Mu DNA. Proc. Natl. Acad. Sci., U S A 72, 4399–4403.

    Article  CAS  PubMed  Google Scholar 

  55. Morgan, G., Hatfull, G., Casjens, S. & Hendrix, R. (2002) Bacteriophage Mu genome sequence: analysis and comparison with Mu-like prophages in Haemophilus, Neisseria and Deinococcus. J. Mol. Biol. 317, 337–359.

    Article  CAS  PubMed  Google Scholar 

  56. Summer, E. J., Gonzalez, C. F., Carlisle, T., Mebane, L. M., Cass, A. M., Savva, C. G., LiPuma, J. & Young, R. (2004) Burkholderia cenocepacia phage BcepMu and a family of Mu-like phages encoding potential pathogenesis factors. J. Mol. Biol. 340, 49–65.

    Article  CAS  PubMed  Google Scholar 

  57. Ito, J. (1978) Bacteriophage f29 terminal protein: its association with the \(5^{\prime}\) termini of the f29 genome. J. Virol. 28, 895–904.

    CAS  PubMed  Google Scholar 

  58. Salas, M., Mellado, R. P. & Vinuela, E. (1978) Characterization of a protein covalently linked to the \(5^{\prime}\) termini of the DNA of Bacillus subtilis phage f29. J. Mol. Biol. 119, 269–291.

    Article  CAS  PubMed  Google Scholar 

  59. Jeanmougin, F., Thompson, J. D., Gouy, M., Higgins, D. G. & Gibson, T. J. (1998) Multiple sequence alignment with Clustal X. Trends Biochem. Sci. 23, 403–405.

    Article  CAS  PubMed  Google Scholar 

  60. Maniatis, T., Fritsch, E. & Sambrook, J. (1982). Molecular cloning A laboratory manual, pp. pp150–163. Cold Spring Harbor Labortory, Cold Spring Harbor, NY.

    Google Scholar 

  61. Southern, E. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503–517.

    Article  CAS  PubMed  Google Scholar 

  62. Earnshaw, W., Casjens, S. & Harrison, S. (1976) Assembly of the head of bacteriophage P22, X-ray diffraction from heads, proheads and related structures. J. Mol. Biol. 104, 387–410.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Casjens, S.R., Gilcrease, E.B. (2009). Determining DNA Packaging Strategy by Analysis of the Termini of the Chromosomes in Tailed-Bacteriophage Virions. In: Clokie, M.R., Kropinski, A.M. (eds) Bacteriophages. Methods in Molecular Biology™, vol 502. Humana Press. https://doi.org/10.1007/978-1-60327-565-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-565-1_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-564-4

  • Online ISBN: 978-1-60327-565-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics