Applications of Ultra-high-Throughput Sequencing

  • Samuel Fox
  • Sergei Filichkin
  • Todd C. Mockler
Part of the Methods in Molecular Biology™ book series (MIMB, volume 553)


The genomics era has enabled scientists to more readily pose truly global questions regarding mutation, evolution, gene and genome structure, function, and regulation. Just as Sanger sequencing ushered in a paradigm shift that enabled the molecular basis of biological questions to be directly addressed, to an even greater degree, ultra-high-throughput DNA sequencing is poised to dramatically change the nature of biological research. New sequencing technologies have opened the door for novel questions to be addressed at the level of the entire genome in the areas of comparative genomics, systems biology, metagenomics, and genome biology. These new sequencing technologies provide a tremendous amount of DNA sequence data to be collected at an astounding pace, with reduced costs, effort, and time as compared to Sanger sequencing. Applications of ultra-high-throughput sequencing (UHTS) are essentially limited only by the imaginations of researchers, and include genome sequencing/resequencing, small RNA discovery, deep SNP discovery, chromatin immunoprecipitation (ChIP) and RNA immunoprecipitation (RIP) coupled with sequence identification, transcriptome analysis including empirical annotation, discovery and characterization of alternative splicing, and gene expression profiling. This technology will have a profound impact on plant breeding, biotechnology, and our fundamental understanding of plant evolution, development, and environmental responses. In this chapter, we provide an overview of UHTS approaches and their applications. We also describe a protocol we have developed for deep sequencing of plant transcriptomes using the Illumina/Solexa sequencing platform.

Key words

Ultra-high-throughput DNA sequencing HTS UHTS microread sequencing transcriptome 454 Illumina Solexa SOLiD 



We thank Rongkun Shen, Henry Priest, Scott Givan, Chris Sullivan, and Doug Bryant for their contributions to our studies involving Illumina-based transcriptome sequencing. We would also like to thank Alice Barkan, Todd Castoe, Todd Michael, and Laurence von Kalm for their helpful comments on this chapter. This work was supported by Oregon State University and by grant ARF4435 from the Oregon Agricultural Research Foundation.


  1. 1.
    Schuster, S.C. (2008) Next-generation sequencing transforms today's biology. Nat. Methods 5, 16–18.PubMedCrossRefGoogle Scholar
  2. 2.
    Wold, B. and Myers, R.M. (2008) Sequence census methods for functional genomics. Nat. Methods 5, 19–21.PubMedCrossRefGoogle Scholar
  3. 3.
    Ronaghi, M., Karamohamed, S., Pettersson, B., Uhlén, M., and Nyrén, P. (1996) Real-time DNA sequencing using detection of pyrophosphate release. Anal. Biochem. 242, 84–89.PubMedCrossRefGoogle Scholar
  4. 4.
    Margulies, M., Egholm, M., Altman, W.E., Attiya, S., Bader, J.S., Bemben, L.A., Berka, J., Braverman, M.S., Chen, Y.J., Chen, Z., et al. (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380.PubMedGoogle Scholar
  5. 5.
    Metzker, M.L. (2005) Emerging technologies in DNA sequencing. Genome Res. 15, 1767–1776.PubMedCrossRefGoogle Scholar
  6. 6.
    Chaisson, M.J. (2008) Short read fragment assembly of bacterial genomes. Genome Res. 18, 324–330.PubMedCrossRefGoogle Scholar
  7. 7.
    Dohm, J.C., Lottaz, C., Borodina, T., and Himmelbauer, H. (2007) SHARCGS, a fast and highly accurate short-read assembly algorithm for de novo genomic sequencing. Genome Res. 17, 1697–1706.PubMedCrossRefGoogle Scholar
  8. 8.
    Adams, M.D., Celniker, S.E., Holt, R.A., Evans, C.A., Gocayne, J.D., Amanatides, P.G., Scherer, S.E., Li, P.W., Hoskins, R.A., Galle, R.F., et al. (2000) The genome sequence of Drosophila melanogaster. Science 287, 2185–2195.PubMedCrossRefGoogle Scholar
  9. 9.
    Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G., Smith, H.O., Yandell, M., Evans, C.A., Holt, R.A., et al. (2001) The sequence of the human genome. Science 291, 1304–1351.PubMedCrossRefGoogle Scholar
  10. 10.
    Velasco, R., Zharkikh, A., Troggio, M., Cartwright, D.A., Cestaro, A., Pruss, D., Pindo, M., Fitzgerald, L.M., Vezzulli, S., Reid, J., et al. (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 2, e1326.PubMedCrossRefGoogle Scholar
  11. 11.
    Goldberg, S.M., Johnson, J., Busam, D., Feldblyum, T., Ferriera, S., Friedman, R., Halpern, A., Khouri, H., Kravitz, S.A., Lauro, F.M., et al. (2006) A Sanger/pyrosequencing hybrid approach for the generation of high-quality draft assemblies of marine microbial genomes. Proc. Natl. Acad. Sci. U S A 103, 11240–11245.PubMedCrossRefGoogle Scholar
  12. 12.
    Swaminathan, K., Varala, K., and Hudson, M.E. (2007) Global repeat discovery and estimation of genomic copy number in a large, complex genome using a high-throughput 454 sequence survey. BMC Genomics 8, 132.PubMedCrossRefGoogle Scholar
  13. 13.
    Macas, J., Neumann, P., and Navratilova, A. (2007) Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics 8, 427.PubMedCrossRefGoogle Scholar
  14. 14.
    Wicker, T., Schlagenhauf, E., Graner, A., Close, T.J., Keller, B., and Stein, N. (2006) 454 sequencing put to the test using the complex genome of barley. BMC Genomics 7, 275.PubMedCrossRefGoogle Scholar
  15. 15.
    Moore, M.J., Dhingra, A., Soltis, P.S., Shaw, R., Farmerie, W.G., Folta, K.M., and Soltis, D.E. (2006) Rapid and accurate pyrosequencing of angiosperm plastid genomes. BMC Plant Biol. 6, 17.PubMedCrossRefGoogle Scholar
  16. 16.
    Barbazuk, W.B., Emrich, S.J., Chen, H.D., Li, L., and Schnable, P.S. (2007) SNP discovery via 454 transcriptome sequencing. Plant J. 51, 910–918.PubMedCrossRefGoogle Scholar
  17. 17.
    Thomas, R.K., Nickerson, E., Simons, J.F., Jänne, P.A., Tengs, T., Yuza, Y., Garraway, L.A., LaFramboise, T., Lee, J.C., Shah, K., et al. (2006) Sensitive mutation detection in heterogeneous cancer specimens by massively parallel picoliter reactor sequencing. Nat. Med. 12, 852–855.PubMedCrossRefGoogle Scholar
  18. 18.
    van Orsouw, N.J., Hogers, R.C., Janssen, A., Yalcin, F., Snoeijers, S., Verstege, E., Schneiders, H., van der Poel, H., van Oeveren, J., Verstegen, H., et al. (2007) Complexity reduction of polymorphic sequences (CRoPStrade mark): a novel approach for large-scale polymorphism discovery in complex genomes. PLoS ONE 2, e1172.PubMedCrossRefGoogle Scholar
  19. 19.
    Velculescu, V.E., Zhang, L., Vogelstein, B., and Kinzler, K.W. (1995) Serial analysis of gene expression. Science 270, 484–487.PubMedCrossRefGoogle Scholar
  20. 20.
    Brenner, S., Johnson, M., Bridgham, J., Golda, G., Lloyd, D.H., Johnson, D., Luo, S., McCurdy, S., Foy, M., Ewan, M., et al. (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat. Biotechnol. 18, 630–634.PubMedCrossRefGoogle Scholar
  21. 21.
    Ge, X., Wu, Q., and Wang, S.M. (2006) SAGE detects microRNA precursors. BMC Genomics 7, 285.PubMedCrossRefGoogle Scholar
  22. 22.
    Lu, C., Tej, S.S., Luo, S., Haudenschild, C.D., Meyers, B.C., and Green, P.J. (2005) Elucidation of the small RNA component of the transcriptome. Science 309, 1567–1569.PubMedCrossRefGoogle Scholar
  23. 23.
    Lu, C., Kulkarni, K., Souret, F.F., MuthuValliappan, R., Tej, S.S., Poethig, R.S., Henderson, I.R., Jacobsen, S.E., Wang, W., Green, P.J., et al. (2006) MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant. Genome Res. 16, 1276–1288.PubMedCrossRefGoogle Scholar
  24. 24.
    Fahlgren, N., Howell, M.D., Kasschau, K.D., Chapman, E.J., Sullivan, C.M., Cumbie, J.S., Givan, S.A., Law, T.F., Grant, S.R., Dangl, J.L., et al. (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS ONE 2, e219.PubMedCrossRefGoogle Scholar
  25. 25.
    Kasschau, K.D., Fahlgren, N., Chapman, E.J., Sullivan, C.M., Cumbie, J.S., Givan, S.A., and Carrington, J.C. (2007) Genome-wide profiling and analysis of Arabidopsis siRNAs. PLoS Biol. 5, e57.PubMedCrossRefGoogle Scholar
  26. 26.
    Henderson, I.R., Zhang, X., Lu, C., Johnson, L., Meyers, B.C., Green, P.J., and Jacobsen, S.E. (2006) Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat. Genet. 38, 721–725.PubMedCrossRefGoogle Scholar
  27. 27.
    Rajagopalan, R., Vaucheret, H., Trejo, J., and Bartel, D.P. (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev. 20, 3407–3425.PubMedCrossRefGoogle Scholar
  28. 28.
    Barakat, A., Wall, K., Diloretto, S., dePamphilis, C., and Carlson, C. (2007) Conservation and divergence of microRNAs in Populus. BMC Genomics 8, 481.PubMedCrossRefGoogle Scholar
  29. 29.
    Barakat, A., Wall, K., Leebens-Mack, J., Wang, Y.J., Carlson, J.E., and Depamphilis, C.W. (2007) Large-scale identification of microRNAs from a basal eudicot (Eschscholzia californica) and conservation in flowering plants. Plant J. 51, 991–1003.PubMedCrossRefGoogle Scholar
  30. 30.
    Yao, Y. and Ni, Z. (2007) Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol. 8, R96.PubMedCrossRefGoogle Scholar
  31. 31.
    Mockler, T.C., Chan, S., Sundaresan, A., Chen, H., Jacobsen, S.E., and Ecker, J.R. (2005) Applications of DNA tiling arrays for whole-genome analysis. Genomics 85, 1–15.PubMedCrossRefGoogle Scholar
  32. 32.
    Mardis, E.R. (2007) ChIP-seq: welcome to the new frontier. Nat. Methods 4, 613–614.PubMedCrossRefGoogle Scholar
  33. 33.
    Johnson, D.S., Mortazavi, A., Myers, R.M., and Wold, B. (2007) Genome-wide mapping of in vivo protein–DNA interactions. Science 316, 1497–1502.PubMedCrossRefGoogle Scholar
  34. 34.
    Robertson, G., Hirst, M., Bainbridge, M., Bilenky, M., Zhao, Y., Zeng, T., Euskirchen, G., Bernier, B., Varhol, R., Delaney, A., et al. (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat. Methods 4, 651–657.PubMedCrossRefGoogle Scholar
  35. 35.
    Mikkelsen, T.S., Ku, M., Jaffe, D.B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P., Brockman, W., Kim, T.K., Koche, R.P., et al. (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560.PubMedCrossRefGoogle Scholar
  36. 36.
    Albert, I., Mavrich, T.N., Tomsho, L.P., Qi, J., Zanton, S.J., Schuster, S.C., and Pugh, B.F. (2007) Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 446, 572–576.PubMedCrossRefGoogle Scholar
  37. 37.
    Barski, A., Cuddapah, S., Cui, K., Roh, T.Y., Schones, D.E., Wang, Z., Wei, G., Chepelev, I., and Zhao, K. (2007) High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837.PubMedCrossRefGoogle Scholar
  38. 38.
    Taylor, K.H., Kramer, R.S., Davis, J.W., Guo, J., Duff, D.J., Xu, D., Caldwell, C.W., and Shi, H. (2007) Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing. Cancer Res. 67, 8511–8518.PubMedCrossRefGoogle Scholar
  39. 39.
    Angly, F.E., Felts, B., Breitbart, M., Salamon, P., Edwards, R.A., Carlson, C., Chan, A.M., Haynes, M., Kelley, S., Liu, H., et al. (2006) The marine viromes of four oceanic regions. PLoS Biol. 4, e368.PubMedCrossRefGoogle Scholar
  40. 40.
    Cox-Foster, D.L., Conlan, S., Holmes, E.C., Palacios, G., Evans, J.D., Moran, N.A., Quan, P.L., Briese, T., Hornig, M., Geiser, D.M., et al. (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318, 283–287.PubMedCrossRefGoogle Scholar
  41. 41.
    Sogin, M.L., Morrison, H.G., Huber, J.A., Mark Welch, D., Huse, S.M., Neal, P.R., Arrieta, J.M., and Herndl, G.J. (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl. Acad. Sci. U S A 103, 12115–12120.Google Scholar
  42. 42.
    Gilbert, M.T., Binladen, J., Miller, W., Wiuf, C., Willerslev, E., Poinar, H., Carlson, J.E., Leebens-Mack, J.H., and Schuster, S.C. (2007) Recharacterization of ancient DNA miscoding lesions: insights in the era of sequencing-by-synthesis. Nucleic Acids Res. 35, 1–10.PubMedCrossRefGoogle Scholar
  43. 43.
    Poinar, H.N., Schwarz, C., Qi, J., Shapiro, B., Macphee, R.D., Buigues, B., Tikhonov, A., Huson, D.H., Tomsho, L.P., Auch, A., et al. (2006) Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science 311, 392–394.PubMedCrossRefGoogle Scholar
  44. 44.
    Green, R.E., Krause, J., Ptak, S.E., Briggs, A.W., Ronan, M.T., Simons, J.F., Du, L., Egholm, M., Rothberg, J.M., Paunovic, M., et al. (2006) Analysis of one million base pairs of Neanderthal DNA. Nature 444, 330–336.PubMedCrossRefGoogle Scholar
  45. 45.
    Noonan, J.P., Coop, G., Kudaravalli, S., Smith, D., Krause, J., Alessi, J., Chen, F., Platt, D., Pääbo, S., Pritchard, J.K., et al. (2006) Sequencing and analysis of Neanderthal genomic DNA. Science 314, 1113–1118.PubMedCrossRefGoogle Scholar
  46. 46.
    Hodges, E., Xuan, Z., Balija, V., Kramer, M., Molla, M.N., Smith, S.W., Middle, C.M., Rodesch, M.J., Albert, T.J., Hannon, G.J., et al. (2007) Genome-wide in situ exon capture for selective resequencing. Nat. Genet. 39, 1522–1527.PubMedCrossRefGoogle Scholar
  47. 47.
    Porreca, G.J., Zhang, K., Li, J.B., Xie, B., Austin, D., Vassallo, S.L., LeProust, E.M., Peck, B.J., Emig, C.J., Dahl, F., et al. (2007) Multiplex amplification of large sets of human exons. Nat. Methods 4, 931–936.PubMedCrossRefGoogle Scholar
  48. 48.
    Hene, L., Sreenu, V.B., Vuong, M.T., Abidi, S.H., Sutton, J.K., Rowland-Jones, S.L., Davis, S.J., and Evans, E.J. (2007) Deep analysis of cellular transcriptomes – LongSAGE versus classic MPSS. BMC Genomics 8, 333.PubMedCrossRefGoogle Scholar
  49. 49.
    Emrich, S.J., Barbazuk, W.B., Li, L., and Schnable, P.S. (2007) Gene discovery and annotation using LCM-454 transcriptome sequencing. Genome Res. 17, 69–73.PubMedCrossRefGoogle Scholar
  50. 50.
    Eveland, A.L., McCarty, D.R., and Koch, K.E. (2007) Transcript profiling by 3′UTR sequencing resolves expression of gene families. Plant Physiol. 146, 32–44.PubMedCrossRefGoogle Scholar
  51. 51.
    Gowda, M., Li, H., Alessi, J., Chen, F., Pratt, R., and Wang, G.L. (2006) Robust analysis of 5′-transcript ends (5′-RATE): a novel technique for transcriptome analysis and genome annotation. Nucleic Acids Res. 34, e126.PubMedCrossRefGoogle Scholar
  52. 52.
    Kim, J.B., Porreca, G.J., Song, L., Greenway, S.C., Gorham, J.M., Church, G.M., Seidman, C.E., and Seidman, J.G. (2007) Polony multiplex analysis of gene expression (PMAGE) in mouse hypertrophic cardiomyopathy. Science 316, 1481–1484.PubMedCrossRefGoogle Scholar
  53. 53.
    Shendure, J., Porreca, G.J., Reppas, N.B., Lin, X., McCutcheon, J.P., Rosenbaum, A.M., Wang, M.D., Zhang, K., Mitra, R.D., and Church, G.M. (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309, 1728–1732.PubMedCrossRefGoogle Scholar
  54. 54.
    Bainbridge, M.N., Warren, R.L., Hirst, M., Romanuik, T., Zeng, T., Go, A., Delaney, A., Griffith, M., Hickenbotham, M., Magrini, V., et al. (2006) Analysis of the prostate cancer cell line LNCaP transcriptome using a sequencing-by-synthesis approach. BMC Genomics 7, 246.PubMedCrossRefGoogle Scholar
  55. 55.
    Torres, T.T., Metta, M., Ottenwälder, B., and Schlötterer, C. (2008) Gene expression profiling by massively parallel sequencing. Genome Res. 18, 172–177.PubMedCrossRefGoogle Scholar
  56. 56.
    Toth, A.L., Varala, K., Newman, T.C., Miguez, F.E., Hutchison, S.K., Willoughby, D.A., Simons, J.F., Egholm, M., Hunt, J.H., Hudson, M.E., et al. (2007) Wasp gene expression supports an evolutionary link between maternal behavior and eusociality. Science 318, 441–444.PubMedCrossRefGoogle Scholar
  57. 57.
    Weber, A.P., Weber, K.L., Carr, K., Wilkerson, C., and Ohlrogge, J.B. (2007) Sampling the Arabidopsis transcriptome with massively parallel pyrosequencing. Plant Physiol. 144, 32–42.PubMedCrossRefGoogle Scholar
  58. 58.
    Cheung, F., Haas, B.J., Goldberg, S.M., May, G.D., Xiao, Y., and Town, C.D. (2006) Sequencing Medicago truncatula expressed sequenced tags using 454 Life Sciences technology. BMC Genomics 7, 272.PubMedCrossRefGoogle Scholar
  59. 59.
    Michael, T.P., Mockler, T.C., Breton, G., McEntee, C., Byer, A., Trout, J.D., Hazen, S.P., Priest, H.D., Sullivan, C.M., Shen, R., et al. (2007) Network discovery pipeline elucidates conserved time of day specific cis-regulatory modules. PLoS Genetics 2(8), e 795.Google Scholar
  60. 60.
    Ewing, B. and Green, P. (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8, 186–194.PubMedGoogle Scholar
  61. 61.
    Myers, E.W., Sutton, G.G., Delcher, A.L., Dew, I.M., Fasulo, D.P., Flanigan, M.J., Kravitz, S.A., Mobarry, C.M., Reinert, K.H., Remington, K.A., et al. (2000) A whole-genome assembly of Drosophila. Science 287, 2196–2204.PubMedCrossRefGoogle Scholar
  62. 62.
    Sutton, G., White, O., Adams, M., and Kerlavage, A. (1995) TIGR Assembler: a new tool for assembling large shotgun sequencing projects. Genome Sci. Technol. 1, 9–19.CrossRefGoogle Scholar
  63. 63.
    Jaffe, D.B., Butler, J., Gnerre, S., Mauceli, E., Lindblad-Toh, K., Mesirov, J.P., Zody, M.C., and Lander, E.S. (2003) Whole-genome sequence assembly for mammalian genomes: Arachne 2. Genome Res. 13, 91–96.PubMedCrossRefGoogle Scholar
  64. 64.
    Kent, W.J. (2002) BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664.PubMedGoogle Scholar
  65. 65.
    Warren, R.L., Sutton, G.G., Jones, S.J., and Holt, R.A. (2007) Assembling millions of short DNA sequences using SSAKE. Bioinformatics 23, 500–501.PubMedCrossRefGoogle Scholar
  66. 66.
    Jeck, W.R., Reinhardt, J.A., Baltrus, D.A., Hickenbotham, M.T., Magrini, V., Mardis, E.R., Dangl, J.L., and Jones, C.D. (2007) Extending assembly of short DNA sequences to handle error. Bioinformatics 23, 2942–2944.PubMedCrossRefGoogle Scholar
  67. 67.
    Schatz, M.C. and Trapnell, C. (2007) High-throughput sequence alignment using Graphics Processing Units. BMC Bioinformatics 8, 474.PubMedCrossRefGoogle Scholar
  68. 68.
    Zhu, Y., Machleder, E., Chenchik, A., and Siebert, P. (2001) Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction. Biotechniques 30, 892–897.PubMedGoogle Scholar
  69. 69.
    Zhulidov, P.A., Bogdanova, E.A., Shcheglov, A.S., Vagner, L.L., Khaspekov, G.L., Kozhemyako, V.B., Matz, M.V., Meleshkevitch, E., Moroz, L.L., Lukyanov, S.A., et al. (2004) Simple cDNA normalization using kamchatka crab duplex-specific nuclease. Nucleic Acids Res. 32, e37.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Samuel Fox
    • 1
  • Sergei Filichkin
    • 1
  • Todd C. Mockler
    • 1
  1. 1.Department of Botany and Plant Pathology and Center for Genome Research and BiocomputingOregon State UniversityCorvallisUSA

Personalised recommendations