Skip to main content

Manipulating Large-Scale Arabidopsis Microarray Expression Data: Identifying Dominant Expression Patterns and Biological Process Enrichment

  • Protocol
  • First Online:
Plant Systems Biology

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 553))

Abstract

A series of large-scale Arabidopsis thaliana microarray expression experiments profiling genome-wide expression across different developmental stages, cell types, and environmental conditions have resulted in tremendous amounts of gene expression data. This gene expression is the output of complex transcriptional regulatory networks and provides a starting point for identifying the dominant transcriptional regulatory modules acting within the plant. Highly co-expressed groups of genes are likely to be regulated by similar transcription factors. Therefore, finding these co-expressed groups can reduce the dimensionality of complex expression data into a set of dominant transcriptional regulatory modules. Determining the biological significance of these patterns is an informatics challenge and has required the development of new methods. Using these new methods we can begin to understand the biological information contained within large-scale expression data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Busch, W. and Lohmann, J.U. (2007) Profiling a plant: expression analysis in Arabidopsis. Current Opinion in Plant Biology 10(2), 136--141.

    Article  PubMed  CAS  Google Scholar 

  2. Schmid, M., Davison, T.S., Henz, S.R., et al. (2005) A gene expression map of Arabidopsis thaliana development. Nature Genetics 37(5), 501--506.

    Article  PubMed  CAS  Google Scholar 

  3. Nemhauser, J.L., Hong, F., and Chory, J. (2006) Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126(3), 467--475.

    Article  PubMed  CAS  Google Scholar 

  4. Kilian, J., Whitehead, D., Horak, J., et al. (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant Journal 50(2), 347--363.

    Article  PubMed  CAS  Google Scholar 

  5. Birnbaum, K., Jung, J.W., Wang, J.Y., et al. (2005) Cell type-specific expression profiling in plants via cell sorting of protoplasts from fluorescent reporter lines. Nature Methods 2(8), 615--619.

    Article  PubMed  CAS  Google Scholar 

  6. Birnbaum, K., Shasha, D.E., Wang, J.Y., et al. (2003) A gene expression map of the Arabidopsis root. Science 302(5652), 1956--1960.

    Article  PubMed  CAS  Google Scholar 

  7. Brady, S.M., Orlando, D.A., Lee , J.-Y., et al. (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318(5851), 801--806.

    Article  PubMed  CAS  Google Scholar 

  8. Kaufman, L. and Rousseeuw, P.J. (1990) Finding Groups in Data: An Introduction to Cluster Analysis. New York: Wiley.

    Google Scholar 

  9. Ashburner, M., Ball, C.A., Blake, J.A., et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Genetics 25, 25--29.

    Article  PubMed  CAS  Google Scholar 

  10. Swarbreck, D., Wilks, C., Lamesch, P., et al. (2007) The Arabidopsis Information Resource (TAIR): gene structure and function annotation. Nucleic Acids Research, gkm965.

    Google Scholar 

  11. Guo, A., He, K., Liu, D., et al. (2005) DATF: a database of Arabidopsis transcription factors. Bioinformatics 21(10), 2568--2569.

    Article  PubMed  CAS  Google Scholar 

  12. Higo, K., Ugawa, Y., Iwamoto, M., and Korenaga, T. (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Research 27(1), 297--300.

    Article  PubMed  CAS  Google Scholar 

  13. Palaniswamy, S.K., James, S., Sun, H., Lamb, R.S., Davuluri, R.V., and Grotewold, E. (2006) AGRIS and AtRegNet. A platform to link cis-regulatory elements and transcription factors into regulatory networks. Plant Physiology 140(3), 818--829.

    Article  PubMed  CAS  Google Scholar 

  14. Brown, D.M., Zeef , L.A.H., Ellis, J., Goodacre, R., Turner, S.R. (2005) Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17(8), 2281--2295.

    Article  PubMed  CAS  Google Scholar 

  15. Jones, M.A., Raymond, M.J., and Smirnoff, N. (2006) Analysis of the root-hair morphogenesis transcriptome reveals the molecular identity of six genes with roles in root-hair development in Arabidopsis. Plant Journal 45(1), 83--100.

    Article  PubMed  CAS  Google Scholar 

  16. Menges, M., de Jager, S.M., Gruissem, W., Murray, J.A.H. (2005) Global analysis of the core cell cycle regulators of Arabidopsis identifies novel genes, reveals multiple and highly specific profiles of expression and provides a coherent model for plant cell cycle control. Plant Journal 41(4), 546--566.

    Article  PubMed  CAS  Google Scholar 

  17. Persson, S., Wei, H., Milne, J., Page, G.P., and Somerville, C.R. (2005) Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proceedings of the National Academy of Sciences of the United States of America 102(24), 8633--8638.

    Article  PubMed  CAS  Google Scholar 

  18. Gadbury, G.L., Garrett, K.A., and Allison, D.B. Challenges and approaches to statistical design and inference in high dimensional investigations. In this volume.

    Google Scholar 

  19. Boyle, E.I., Weng, S., Gollub, J., et al. (2004) GO::TermFinder -- open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 18, 3710--3715.

    Article  Google Scholar 

  20. O'Connor, T.R., Dyreson, C., and Wyrick, J.J. (2005) Athena: a resource for rapid visualization and systematic analysis of Arabidopsis promoter sequences. Bioinformatics 24, 4411--4413.

    Article  Google Scholar 

  21. Team RDC. (2006) R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  22. Iida, K., Seki, M., Sakurai, T., et al. (2005) RARTF: database and tools for complete sets of Arabidopsis transcription factors. DNA Research 12, 247--256.

    Article  PubMed  CAS  Google Scholar 

  23. Storey, J.D. (2002) A direct approach to false discovery rates. Journal of the Royal Statistical Society, Series B 64, 479--498.

    Article  Google Scholar 

  24. Maechler, M., Rousseeuw, P.J., Hubert, M., and Hornik, K. (2007) Cluster: Cluster Analysis Basics and Extensions. In R package version 1.11. 9 ed.

    Google Scholar 

  25. Gasch, A. and Eisen, M. (2002) Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering. Genome Biology 3(11): research0059.1--research 22.

    Google Scholar 

  26. Tibshirani, R., Walther, G., and Hastie, T. (2000) Estimating the number of clusters in a dataset via the gap statistic. Technical Report 208. Department of Statistics, Stanford University.

    Google Scholar 

  27. Levine, D.M., Haynor, D.R., Castle, J.C., et al. (2006) Pathway and gene-set activation measurement from mRNA expression data: the tissue distribution of human pathways. Genome Biology 7(10), R93.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Orlando, D.A., Brady, S.M., Koch, J.D., Dinneny, J.R., Benfey, P.N. (2009). Manipulating Large-Scale Arabidopsis Microarray Expression Data: Identifying Dominant Expression Patterns and Biological Process Enrichment. In: Belostotsky, D. (eds) Plant Systems Biology. Methods in Molecular Biology™, vol 553. Humana Press. https://doi.org/10.1007/978-1-60327-563-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-563-7_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-562-0

  • Online ISBN: 978-1-60327-563-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics