Advertisement

Whole-Genome Microarrays: Applications and Technical Issues

  • Brian D. Gregory
  • Dmitry A. Belostotsky
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 553)

Abstract

DNA microarrays have become a mainstream tool in experimental plant biology. The constant improvements in the technological platforms have enabled the development of the tiling DNA microarrays that cover the whole genome, which in turn catalyzed the wide variety of creative applications of such microarrays in the areas as diverse as global studies of genetic variation, DNA-binding proteins, DNA methylation, and chromatin and transcriptome dynamics. This chapter attempts to summarize such applications as well as discusses some technical and strategic issues that are particular to the use of tiling microarrays.

Key words

Tiling arrays transcriptome tilemap Arabidopsis rice 

Notes

Acknowledgments

Research on plant gene expression in the Belostotsky lab is supported by USDA (award 2007-35301-18207), the National Science Foundation (awards MCB-0424651 and DBI-0724168), and BARD (award 3756-05). B.D.G. is a Damon Runyon Fellow, supported by the Damon Runyon Cancer Research Foundation.

References

  1. 1.
    Penterman, J., Zilberman, D., Huh, J.H., Ballinger, T., Henikoff, S., and Fischer, R.L. (2007) DNA demethylation in the Arabidopsis genome. Proc. Natl. Acad. Sci. USA 104, 6752–6757.Google Scholar
  2. 2.
    Kakutani, T. (2002) Epi-alleles in plants: inheritance of epigenetic information over generations. Plant Cell Physiol. 43, 1106–1111.PubMedCrossRefGoogle Scholar
  3. 3.
    Kankel, M.W., Ramsey, D.E., Stokes, T.L., Flowers, S.K., Haag, J.R., Jeddeloh, J.A., Riddle, N.C., Verbsky, M.L., and Richards, E.J. (2003) Arabidopsis MET1 cytosine methyltransferase mutants. Genetics 163, 1109–1122.PubMedGoogle Scholar
  4. 4.
    Clark, R.M., Schweikert, G., Toomajian, C., Ossowski, S., Zeller, G., Shinn, P., Warthmann, N., Hu, T.T., Fu, G., Hinds, D.A., Chen, H., Frazer, K.A., Huson, D.H., Scholkopf, B., Nordborg, M., Ratsch, G., Ecker, J.R., and Weigel, D. (2007) Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science 317, 338–342.PubMedCrossRefGoogle Scholar
  5. 5.
    Van Gelder, R.N., von Zastrow, M.E., Yool, A., Dement, W.C., Barchas, J.D., and Eberwine, J.H. (1990) Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc. Natl. Acad. Sci. USA 87, 1663–1667.Google Scholar
  6. 6.
    Zhang, X., Yazaki, J., Sundaresan, A., Cokus, S., Chan, S.W., Chen, H., Henderson, I.R., Shinn, P., Pellegrini, M., Jacobsen, S.E., and Ecker, J.R. (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 126, 1189–1201.PubMedCrossRefGoogle Scholar
  7. 7.
    Choi, Y., Gehring, M., Johnson, L., Hannon, M., Harada, J.J., Goldberg, R.B., Jacobsen, S.E., and Fischer, R.L. (2002) DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in arabidopsis. Cell 110, 33–42.PubMedCrossRefGoogle Scholar
  8. 8.
    Hanada, K., Zhang, X., Borevitz, J.O., Li, W.H., and Shiu, S.H. (2007) A large number of novel coding small open reading frames in the intergenic regions of the Arabidopsis thaliana genome are transcribed and/or under purifying selection. Genome Res. 17, 632–640.PubMedCrossRefGoogle Scholar
  9. 9.
    Daruwala, R.S., Rudra, A., Ostrer, H., Lucito, R., Wigler, M., and Mishra, B. (2004) A versatile statistical analysis algorithm to detect genome copy number variation. Proc. Natl. Acad. Sci. USA 101, 16292–16297.PubMedCrossRefGoogle Scholar
  10. 10.
    Keles, S., van der Laan, M.J., Dudoit, S., and Cawley, S.E. (2006) Multiple testing methods for ChIP-Chip high density oligonucleotide array data. J. Comput. Biol. 13, 579–613.PubMedCrossRefGoogle Scholar
  11. 11.
    Kim, H., Snesrud, E.C., Haas, B., Cheung, F., Town, C.D., and Quackenbush, J. (2003) Gene expression analyses of Arabidopsis chromosome 2 using a genomic DNA amplicon microarray. Genome Res. 13, 327–340.PubMedCrossRefGoogle Scholar
  12. 12.
    Hekstra, D., Taussig, A.R., Magnasco, M., and Naef, F. (2003) Absolute mRNA concentrations from sequence-specific calibration of oligonucleotide arrays. Nucleic Acids Res. 31, 1962–1968.PubMedCrossRefGoogle Scholar
  13. 13.
    Zhang, X., Clarenz, O., Cokus, S., Bernatavichute, Y.V., Pellegrini, M., Goodrich, J., and Jacobsen, S.E. (2007) Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol. 5, e129.PubMedCrossRefGoogle Scholar
  14. 14.
    Sablowski, R.W. and Meyerowitz, E.M. (1998) A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell 92, 93–103.PubMedCrossRefGoogle Scholar
  15. 15.
    Tran, R.K., Henikoff, J.G., Zilberman, D., Ditt, R.F., Jacobsen, S.E., and Henikoff, S. (2005) DNA methylation profiling identifies CG methylation clusters in Arabidopsis genes. Curr. Biol. 15, 154–159.PubMedCrossRefGoogle Scholar
  16. 16.
    Cao, X. and Jacobsen, S.E. (2002) Role of the arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr. Biol. 12, 1138–1144.PubMedCrossRefGoogle Scholar
  17. 17.
    Wu, J., Smith, L.T., Plass, C., and Huang, T.H. (2006) ChIP-chip comes of age for genome-wide functional analysis. Cancer Res. 66, 6899–6902.PubMedCrossRefGoogle Scholar
  18. 18.
    Turck, F., Roudier, F., Farrona, S., Martin-Magniette, M.L., Guillaume, E., Buisine, N., Gagnot, S., Martienssen, R.A., Coupland, G., and Colot, V. (2007) Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27. PLoS Genet. 3, e86.PubMedCrossRefGoogle Scholar
  19. 19.
    Lee, T.I., Jenner, R.G., Boyer, L.A., Guenther, M.G., Levine, S.S., Kumar, R.M., Chevalier, B., Johnstone, S.E., Cole, M.F., Isono, K., Koseki, H., Fuchikami, T., Abe, K., Murray, H.L., Zucker, J.P., Yuan, B., Bell, G.W., Herbolsheimer, E., Hannett, N.M., Sun, K., Odom, D.T., Otte, A.P., Volkert, T.L., Bartel, D.P., Melton, D.A., Gifford, D.K., Jaenisch, R., and Young, R.A. (2006) Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125, 301–313.PubMedCrossRefGoogle Scholar
  20. 20.
    Picard, F., Robin, S., Lavielle, M., Vaisse, C., and Daudin, J.J. (2005) A statistical approach for array CGH data analysis. BMC Bioinformatics 6, 27.PubMedCrossRefGoogle Scholar
  21. 21.
    Johnson, J.M., Edwards, S., Shoemaker, D., and Schadt, E.E. (2005) Dark matter in the genome: evidence of widespread transcription detected by microarray tiling experiments. Trends Genet. 21, 93–102.PubMedCrossRefGoogle Scholar
  22. 22.
    Bertone, P., Stolc, V., Royce, T.E., Rozowsky, J.S., Urban, A.E., Zhu, X., Rinn, J.L., Tongprasit, W., Samanta, M., Weissman, S., Gerstein, M., and Snyder, M. (2004) Global identification of human transcribed sequences with genome tiling arrays. Science 306, 2242–2246.PubMedCrossRefGoogle Scholar
  23. 23.
    Zilberman, D., Cao, X., Johansen, L.K., Xie, Z., Carrington, J.E., and Jacobsen, S.E. (2004) Role of Arabidopsis ARGONAUTE4 in RNA-directed DNA methylation triggered by inverted repeats. Curr. Biol. 14, 1214–1220.PubMedCrossRefGoogle Scholar
  24. 24.
    Shiu, S.H. and Borevitz, J.O. (2008) The next generation of microarray research: applications in evolutionary and ecological genomics. Heredity 100, 141–149.PubMedCrossRefGoogle Scholar
  25. 25.
    Chanvivattana, Y., Bishopp, A., Schubert, D., Stock, C., Moon, Y.H., Sung, Z.R., and Goodrich, J. (2004) Interaction of Polycomb-group proteins controlling flowering in Arabidopsis. Development 131, 5263–5276.PubMedCrossRefGoogle Scholar
  26. 26.
    David, L., Huber, W., Granovskaia, M., Toedling, J., Palm, C.J., Bofkin, L., Jones, T., Davis, R.W., and Steinmetz, L.M. (2006) A high-resolution map of transcription in the yeast genome. Proc. Natl. Acad. Sci. USA 103, 5320–5325.Google Scholar
  27. 27.
    Li, W., Meyer, C.A., and Liu, X.S. (2005) A hidden Markov model for analyzing ChIP-chip experiments on genome tiling arrays and its application to p53 binding sequences. Bioinformatics 21 Suppl 1, i274–i282.PubMedCrossRefGoogle Scholar
  28. 28.
    Stolc, V., Samanta, M.P., Tongprasit, W., Sethi, H., Liang, S., Nelson, D.C., Hegeman, A., Nelson, C., Rancour, D., Bednarek, S., Ulrich, E.L., Zhao, Q., Wrobel, R.L., Newman, C.S., Fox, B.G., Phillips, Jr., G.N., Markley, J.L., and Sussman, M.R. (2005) Identification of transcribed sequences in Arabidopsis thaliana by using high-resolution genome tiling arrays. Proc. Natl. Acad. Sci. USA 102, 4453–4458.Google Scholar
  29. 29.
    Zilberman, D., Gehring, M., Tran, R.K., Ballinger, T., and Henikoff, S. (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat. Genet. 39, 61–69.PubMedCrossRefGoogle Scholar
  30. 30.
    Zhu, J., Kapoor, A., Sridhar, V.V., Agius, F., and Zhu, J.K. (2007) The DNA glycosylase/lyase ROS1 functions in pruning DNA methylation patterns in Arabidopsis. Curr. Biol. 17, 54–59.PubMedCrossRefGoogle Scholar
  31. 31.
    Stam, M. and Mittelsten Scheid, O. (2005) Paramutation: an encounter leaving a lasting impression. Trends Plant Sci. 10, 283–290.PubMedCrossRefGoogle Scholar
  32. 32.
    Johnson, W.E., Li, W., Meyer, C.A., Gottardo, R., Carroll, J.S., Brown, M., and Liu, X.S. (2006) Model-based analysis of tiling-arrays for ChIP-chip. Proc. Natl. Acad. Sci. USA 103, 12457–12462.PubMedCrossRefGoogle Scholar
  33. 33.
    Li, C.F., Pontes, O., El-Shami, M., Henderson, I.R., Bernatavichute, Y.V., Chan, S.W., Lagrange, T., Pikaard, C.S., and Jacobsen, S.E. (2006) An ARGONAUTE4-containing nuclear processing center colocalized with Cajal bodies in Arabidopsis thaliana. Cell 126, 93–106.PubMedCrossRefGoogle Scholar
  34. 34.
    Agius, F., Kapoor, A., and Zhu, J.K. (2006) Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation. Proc. Natl. Acad. Sci. USA 103, 11796–11801.Google Scholar
  35. 35.
    Swiezewski, S., Crevillen, P., Liu, F., Ecker, J.R., Jerzmanowski, A., and Dean, C. (2007) Small RNA-mediated chromatin silencing directed to the 3′ region of the Arabidopsis gene encoding the developmental regulator, FLC. Proc. Natl. Acad. Sci. USA 104, 3633–3638.Google Scholar
  36. 36.
    Bickel, K.S. and Morris, D.R. (2006) Silencing the transcriptome's dark matter: mechanisms for suppressing translation of intergenic transcripts. Mol. Cell 22, 309–316.PubMedCrossRefGoogle Scholar
  37. 37.
    Chung, H.R., Kostka, D., and Vingron, M. (2007) A physical model for tiling array analysis. Bioinformatics 23, i80–i86.PubMedCrossRefGoogle Scholar
  38. 38.
    Hinds, D.A., Stuve, L.L., Nilsen, G.B., Halperin, E., Eskin, E., Ballinger, D.G., Frazer, K.A., and Cox, D.R. (2005) Whole-genome patterns of common DNA variation in three human populations. Science 307, 1072–1079.PubMedCrossRefGoogle Scholar
  39. 39.
    Cao, X., Aufsatz, W., Zilberman, D., Mette, M.F., Huang, M.S., Matzke, M., and Jacobsen, S.E. (2003) Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation. Curr. Biol. 13, 2212–2217.PubMedCrossRefGoogle Scholar
  40. 40.
    He, F., Li, X., Spatrick, P., Casillo, R., Dong, S., and Jacobson, A. (2003) Genome-wide analysis of mRNAs regulated by the nonsense-mediated and 5′ to 3′ mRNA decay pathways in yeast. Mol. Cell. 12, 1439–1452.PubMedCrossRefGoogle Scholar
  41. 41.
    Kim, S., Plagnol, V., Hu, T.T., Toomajian, C., Clark, R.M., Ossowski, S., Ecker, J.R., Weigel, D., and Nordborg, M. (2007) Recombination and linkage disequilibrium in Arabidopsis thaliana. Nat. Genet. 39, 1151–1155.PubMedCrossRefGoogle Scholar
  42. 42.
    Finnegan, E.J. and Dennis, E.S. (1993) Isolation and identification by sequence homology of a putative cytosine methyltransferase from Arabidopsis thaliana. Nucleic Acids Res. 21, 2383–2388.PubMedCrossRefGoogle Scholar
  43. 43.
    Thibaud-Nissen, F., Wu, H., Richmond, T., Redman, J.C., Johnson, C., Green, R., Arias, J., and Town, C.D. (2006) Development of Arabidopsis whole-genome microarrays and their application to the discovery of binding sites for the TGA2 transcription factor in salicylic acid-treated plants. Plant J. 47, 152–162.PubMedCrossRefGoogle Scholar
  44. 44.
    Lippman, Z., Gendrel, A.V., Colot, V., and Martienssen, R. (2005) Profiling DNA methylation patterns using genomic tiling microarrays. Nat. Methods 2, 219–224.PubMedCrossRefGoogle Scholar
  45. 45.
    Martienssen, R.A., Doerge, R.W., and Colot, V. (2005) Epigenomic mapping in Arabidopsis using tiling microarrays. Chromosome Res. 13, 299–308.PubMedCrossRefGoogle Scholar
  46. 46.
    Yamada, K., Lim, J., Dale, J.M., Chen, H., Shinn, P., Palm, C.J., Southwick, A.M., Wu, H.C., Kim, C., Nguyen, M., Pham, P., Cheuk, R., Karlin-Newmann, G., Liu, S.X., Lam, B., Sakano, H., Wu, T., Yu, G., Miranda, M., Quach, H.L., Tripp, M., Chang, C.H., Lee, J.M., Toriumi, M., Chan, M.M., Tang, C.C., Onodera, C.S., Deng, J.M., Akiyama, K., Ansari, Y., Arakawa, T., Banh, J., Banno, F., Bowser, L., Brooks, S., Carninci, P., Chao, Q., Choy, N., Enju, A., Goldsmith, A.D., Gurjal, M., Hansen, N.F., Hayashizaki, Y., Johnson-Hopson, C., Hsuan, V.W., Iida, K., Karnes, M., Khan, S., Koesema, E., Ishida, J., Jiang, P.X., Jones, T., Kawai, J., Kamiya, A., Meyers, C., Nakajima, M., Narusaka, M., Seki, M., Sakurai, T., Satou, M., Tamse, R., Vaysberg, M., Wallender, E.K., Wong, C., Yamamura, Y., Yuan, S., Shinozaki, K., Davis, R.W., Theologis, A., and Ecker, J.R. (2003) Empirical analysis of transcriptional activity in the Arabidopsis genome. Science 302, 842–846.PubMedCrossRefGoogle Scholar
  47. 47.
    Chekanova, J.A., Gregory, B.D., Reverdatto, S.V., Chen, H., Kumar, R., Hooker, T., Yazaki, J., Li, P., Skiba, N., Peng, Q., Alonso, J., Brukhin, V., Grossniklaus, U., Ecker, J.R., and Belostotsky, D.A. (2007) Genome-wide high-resolution mapping of exosome substrates reveals hidden features in the Arabidopsis transcriptome. Cell 131, 1340–1353.PubMedCrossRefGoogle Scholar
  48. 48.
    Samanta, M.P., Tongprasit, W., Sethi, H., Chin, C.S., and Stolc, V. (2006) Global identification of noncoding RNAs in Saccharomyces cerevisiae by modulating an essential RNA processing pathway. Proc. Natl. Acad. Sci. USA 103, 4192–4197.Google Scholar
  49. 49.
    Wu, Z. and Irizarry, R.A. (2005) Stochastic models inspired by hybridization theory for short oligonucleotide arrays. J. Comput. Biol. 12, 882–893.PubMedCrossRefGoogle Scholar
  50. 50.
    Kinoshita, T., Harada, J.J., Goldberg, R.B., and Fischer, R.L. (2001) Polycomb repression of flowering during early plant development. Proc. Natl. Acad. Sci. USA 98, 14156–14161.Google Scholar
  51. 51.
    Saze, H., Mittelsten Scheid, O., and Paszkowski, J. (2003) Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis. Nat. Genet. 34, 65–69.PubMedCrossRefGoogle Scholar
  52. 52.
    Xiao, W., Gehring, M., Choi, Y., Margossian, L., Pu, H., Harada, J.J., Goldberg, R.B., Pennell, R.I., and Fischer, R.L. (2003) Imprinting of the MEA Polycomb gene is controlled by antagonism between MET1 methyltransferase and DME glycosylase. Dev. Cell 5, 891–901.PubMedCrossRefGoogle Scholar
  53. 53.
    Zuo, J., Niu, Q.W., and Chua, N.H. (2000) Technical advance: an estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J. 24, 265–273.PubMedCrossRefGoogle Scholar
  54. 54.
    Li, L., Wang, X., Sasidharan, R., Stolc, V., Deng, W., He, H., Korbel, J., Chen, X., Tongprasit, W., Ronald, P., Chen, R., Gerstein, M., and Wang Deng, X. (2007) Global identification and characterization of transcriptionally active regions in the rice genome. PLoS ONE 2, e294.PubMedCrossRefGoogle Scholar
  55. 55.
    Hudson, M.E. and Snyder, M. (2006) High-throughput methods of regulatory element discovery. Biotechniques 41, 673, 675, 677 passim.PubMedCrossRefGoogle Scholar
  56. 56.
    Schubert, D., Clarenz, O., and Goodrich, J. (2005) Epigenetic control of plant development by Polycomb-group proteins. Curr. Opin. Plant Biol. 8, 553–561.PubMedCrossRefGoogle Scholar
  57. 57.
    Bulyk, M.L. (2006) DNA microarray technologies for measuring protein–DNA interactions. Curr. Opin. Biotechnol. 17, 422–430.PubMedCrossRefGoogle Scholar
  58. 58.
    Shchepinov, M.S., Case-Green, S.C., and Southern, E.M. (1997) Steric factors influencing hybridisation of nucleic acids to oligonucleotide arrays. Nucleic Acids Res. 25, 1155–1161.PubMedCrossRefGoogle Scholar
  59. 59.
    Kapranov, P., Cawley, S.E., Drenkow, J., Bekiranov, S., Strausberg, R.L., Fodor, S.P., and Gingeras, T.R. (2002) Large-scale transcriptional activity in chromosomes 21 and 22. Science 296, 916–919.PubMedCrossRefGoogle Scholar
  60. 60.
    Borevitz, J.O., Hazen, S.P., Michael, T.P., Morris, G.P., Baxter, I.R., Hu, T.T., Chen, H., Werner, J.D., Nordborg, M., Salt, D.E., Kay, S.A., Chory, J., Weigel, D., Jones, J.D., and Ecker, J.R. (2007) Genome-wide patterns of single-feature polymorphism in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 104,12057–12062.Google Scholar
  61. 61.
    Boyer, L.A., Plath, K., Zeitlinger, J., Brambrink, T., Medeiros, L.A., Lee, T.I., Levine, S.S., Wernig, M., Tajonar, A., Ray, M.K., Bell, G.W., Otte, A.P., Vidal, M., Gifford, D.K., Young, R.A., and Jaenisch, R. (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353.PubMedCrossRefGoogle Scholar
  62. 62.
    Grewal, S.I. and Klar, A.J. (1996) Chromosomal inheritance of epigenetic states in fission yeast during mitosis and meiosis. Cell 86, 95–101.PubMedCrossRefGoogle Scholar
  63. 63.
    Patil, N., Berno, A.J., Hinds, D.A., Barrett, W.A., Doshi, J.M., Hacker, C.R., Kautzer, C.R., Lee, D.H., Marjoribanks, C., McDonough, D.P., Nguyen, B.T., Norris, M.C., Sheehan, J.B., Shen, N., Stern, D., Stokowski, R.P., Thomas, D.J., Trulson, M.O., Vyas, K.R., Frazer, K.A., Fodor, S.P., and Cox, D.R. (2001) Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 294, 1719–1723.PubMedCrossRefGoogle Scholar
  64. 64.
    Ji, H. and Wong, W.H. (2005) TileMap: create chromosomal map of tiling array hybridizations. Bioinformatics 21, 3629–3636.PubMedCrossRefGoogle Scholar
  65. 65.
    Bernstein, B.E., Mikkelsen, T.S., Xie, X., Kamal, M., Huebert, D.J., Cuff, J., Fry, B., Meissner, A., Wernig, M., Plath, K., Jaenisch, R., Wagschal, A., Feil, R., Schreiber, S.L., and Lander, E.S. (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326.PubMedCrossRefGoogle Scholar
  66. 66.
    Gehring, M., Huh, J.H., Hsieh, T.F., Penterman, J., Choi, Y., Harada, J.J., Goldberg, R.B., and Fischer, R.L. (2006) DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation. Cell 124, 495–506.PubMedCrossRefGoogle Scholar
  67. 67.
    Southern, E., Mir, K., and Shchepinov, M. (1999) Molecular interactions on microarrays. Nat. Genet. 21, 5–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Qi, Y., He, X., Wang, X.J., Kohany, O., Jurka, J., and Hannon, G.J. (2006) Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. Nature 443, 1008–1012.PubMedCrossRefGoogle Scholar
  69. 69.
    Jackson, J.P., Lindroth, A.M., Cao, X., and Jacobsen, S.E. (2002) Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416, 556–560.PubMedCrossRefGoogle Scholar
  70. 70.
    Alleman, M. and Doctor, J. (2000) Genomic imprinting in plants: observations and evolutionary implications. Plant Mol. Biol. 43, 147–161.PubMedCrossRefGoogle Scholar
  71. 71.
    Johansson, M.J., He, F., Spatrick, P., Li, C., and Jacobson, A. (2007) Association of yeast Upf1p with direct substrates of the NMD pathway. Proc. Natl. Acad. Sci. USA 104, 20872–20877.Google Scholar
  72. 72.
    Alleman, M., Sidorenko, L., McGinnis, K., Seshadri, V., Dorweiler, J.E., White, J., Sikkink, K., and Chandler, V.L. (2006) An RNA-dependent RNA polymerase is required for paramutation in maize. Nature 442, 295–298.PubMedCrossRefGoogle Scholar
  73. 73.
    Royce, T.E., Rozowsky, J.S., Bertone, P. Samanta, M., Stolc, V., Weissman, S., Snyder, M., and Gerstein, M. (2005) Issues in the analysis of oligonucleotide tiling microarrays for transcript mapping. Trends Genet. 21, 466–475.Google Scholar
  74. 74.
    Kling, J. (2005) The search for a sequencing thoroughbred. Nat. Biotechnol. 23, 1333–1335.PubMedCrossRefGoogle Scholar
  75. 75.
    Mitchell, P., Petfalski, E., Shevchenko, A., Mann, M., and Tollervey, D. (1997) The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′-->5′ exoribonucleases. Cell 91, 457–466.PubMedCrossRefGoogle Scholar
  76. 76.
    Yadegari, R., Kinoshita, T., Lotan, O., Cohen, G., Katz, A., Choi, Y., Katz, A., Nakashima, K., Harada, J.J., Goldberg, R.B., Fischer, R.L., and Ohad, N. (2000) Mutations in the FIE and MEA genes that encode interacting polycomb proteins cause parent-of-origin effects on seed development by distinct mechanisms. Plant Cell 12, 2367–2382.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Brian D. Gregory
    • 1
  • Dmitry A. Belostotsky
    • 2
  1. 1.Plant Biology LaboratoryThe Salk Institute for Biological StudiesLa JollaUSA
  2. 2.School of Biological SciencesUniversity of Missouri Kansas CityKansas CityUSA

Personalised recommendations