Integration of Metabolic Reactions and Gene Regulation

  • Chen-Hsiang Yeang
Part of the Methods in Molecular Biology™ book series (MIMB, volume 553)


Metabolic reactions and gene regulation are two primary processes of cells. In response to environmental changes cells often adjust the regulatory programs and shift the metabolic states. An integrative investigation and modeling of these two processes would improve our understanding of the cellular systems and may generate substantial impacts in medicine, agriculture, environmental protection, and energy. We review the studies of the various aspects of the crosstalk between metabolic reactions and gene regulation, including models, empirical evidence, and available databases.

Key words

Gene regulation metabolic reactions 


  1. 1.
    Dyson, R. (1999) Origins of life. Cambridge University Press, New York, USA.CrossRefGoogle Scholar
  2. 2.
    Maynard Smith, J. and Szathmary, E. (1999) The origins of life: from the birth of life to the origin of language. Oxford University Press, New York, USA.Google Scholar
  3. 3.
    Varma, A. and Palsson B.O. (1994) Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild type Escherichia coli W3110. Appl. Environ. Microbiol. 60(10), 3724–3731.PubMedGoogle Scholar
  4. 4.
    Bonarius, H.P.J., Schmid, G., and Tramper, J. (1997) Flux analysis of underdetermined metabolic networks: the quest for the missing constraints. Trends Biotechnol. 15, 308–314.CrossRefGoogle Scholar
  5. 5.
    Edwards, J.S. and Palsson, B.O. (1998) How will bioinformatics influence metabolic engineering? Biotechnol. Bioeng. 58, 162–169.PubMedCrossRefGoogle Scholar
  6. 6.
    Varma, A. and Palsson B.O. (1993) Metabolic capabilities of Escherichia coli. II. Optimal growth patterns. J. Theor. Biol. 165, 503–522.CrossRefGoogle Scholar
  7. 7.
    Danzig, G.B., Orden, A., and Wolfe, P. (2003) The generalized simplex method for minimizing a linear form under linear inequality restraints. In The basic George B. Danzig. Stanford University Press, California, USA.Google Scholar
  8. 8.
    Karmarkar, N. (1984) A new polynomial-time algorithm for linear programming. Combinatorica. 4(4), 373–395.CrossRefGoogle Scholar
  9. 9.
    Edwards, J.S., Ibarra, R.U., and Palsson, B.O. (2001) In silico prediction of Escherichia coli metabolic capabilities are consistent with experimental data. Nat. Biotechnol. 19, 125–130.PubMedCrossRefGoogle Scholar
  10. 10.
    Schuster, S., Dandekar, T., and Fell, D.A. (1999) Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol. 17, 53–60.PubMedCrossRefGoogle Scholar
  11. 11.
    Schuster, S., Fell, D.A., and Dandekar, T.A. (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat. Biotechnol. 18, 326–332.PubMedCrossRefGoogle Scholar
  12. 12.
    Stelling, J., Klamt, S., Bettenbrock, K., Schuster, S., and Gilles, E.D. (2002) Metabolic network structure determines key aspects of functionality and regulation. Nature. 420, 190–193.PubMedCrossRefGoogle Scholar
  13. 13.
    Wiechert, W. (2001) C13 metabolic flux analysis. Metab. Eng. 3, 195–206.PubMedCrossRefGoogle Scholar
  14. 14.
    Emmerling, M., Dauner, M., Ponti, A., Fiaux, J., Hochuli, M., Szyperski, T., Wuthrich, K., Bailey, J.E., and Sauer, U. (2002) Metabolic flux responses to pyruvate kinase knockout in Escherichia coli. J. Bacteriology. 184(1), 152–164.CrossRefGoogle Scholar
  15. 15.
    Hua, Q., Yang, C., Baba, T., Mori, H., and Shimizu, K. (2003) Response of the central metabolism in Escherichia coli to phosphoglucose isomerase and glucose-6-phosphate dehydrogenase knockouts. J. Bacteriol. 185(24), 7053–7067.PubMedCrossRefGoogle Scholar
  16. 16.
    Fischer, E., Zamboni, N., and Sauer, U. (2004) High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived C13 constraints. Analy. Biochem. 325, 308–316.CrossRefGoogle Scholar
  17. 17.
    Velagapudi, V.R., Wittmann, C., Schneider, K., and Heinzle, E. (2007) Metabolic flux screening of Saccharomyces cerevisiae single knockout strains on glucose and galactose supports elucidation of gene function. J. Bacteriol. 132(4), 395–404.Google Scholar
  18. 18.
    Costenoble, R., Muller, D., Barl, T., van Gulik, W.M., van Winden, W.A., Reuss, M., and Heijnen, J.J. (2007) 13C-Labeled metabolic flux analysis of a fed-batch culture of elutriated Saccharomyces cerevisiae. FEMS Yeast Res. 7(4), 511–526.PubMedCrossRefGoogle Scholar
  19. 19.
    Kleijn, R.J., Geertman, J.M., Nfor, B.K., Ras, C., Schipper, D., Pronk, J.T., Heijnen, J.J., van Maris, A.J., and van Winden, W.A. (2007) Metabolic flux analysis of a glycerol-overproducing Saccharomyces cerevisiae strain based on GC-MS, LC-MS and NMR-derived C-labelling data. FEMS Yeast Res. 7(2), 216–231.PubMedCrossRefGoogle Scholar
  20. 20.
    Covert, M., Schilling, C., and Palsson, B.O. (2001) Regulation of gene expression in flux balance models of metabolism. J. Theor. Biol. 213, 73–78.PubMedCrossRefGoogle Scholar
  21. 21.
    Covert, M. and Palsson, B.O. (2003) Constraints-based models: regulation of gene expression reduces the steady-state solution space. J. Theor. Biol. 221, 309–325.PubMedCrossRefGoogle Scholar
  22. 22.
    Ishii, N., Nakahigashi, K., Baba, T., Robert, M., Soga, T., et al. (2007) Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science. 316, 593–597.PubMedCrossRefGoogle Scholar
  23. 23.
    Lehninger, A.L. (1982) Principles of biochemistry. Worth Publishers, New York, USA.Google Scholar
  24. 24.
    Segre, D., Vitkup, D., and Church, G. (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. USA. 99(23), 15112–15117.Google Scholar
  25. 25.
    Segre, D., Zucker, J., Katz, J., Lin, X., D'haeseleer, P., et al. (2003) From annotated genomes to metabolic flux models and kinetic parameter fitting. OMICS. 7(3), 301–316.PubMedCrossRefGoogle Scholar
  26. 26.
    Bertsekas, D. (1995) Nonlinear programming. Athena Scientific, Belmont, MA, USA.Google Scholar
  27. 27.
    Ibarra, R.U., Edwards, J.S., and Palsson, B.O. (2002) Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature. 420, 186–189.PubMedCrossRefGoogle Scholar
  28. 28.
    Uyeda, L. (1979) Phosphofructokinase. Adv. Enzymol. Relat. Areas Mol. Biol. 48, 193–244.PubMedGoogle Scholar
  29. 29.
    Waygood, E.B., Mort, J.S., and Sanwal, B.D. (1976) The control of pyruvate kinase of Escherichia coli. Binding of substrate and allosteric effectors to the enzyme activated by fructose 1,6-bisphosphate. Biochemistry. 15(2), 277–282.Google Scholar
  30. 30.
    Stolovicki, E., Dror, T., Brenner, N., and Braun, E. (2006) Synthetic gene recruitment reveals adaptive reprogramming of gene regulation in yeast. Genetics. 173(1), 75–85.PubMedCrossRefGoogle Scholar
  31. 31.
    Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., and Barabási, A.L. (2000) The large-scale organization of metabolic networks. Nature. 407(6804), 651–654.Google Scholar
  32. 32.
    Carlson, J.M. and Doyle, J. (2002) Complexity and robustness. Proc. Natl. Acad. Sci. 99(suppl. 1), 2538–2545.Google Scholar
  33. 33.
    Iuchi, S. (1993) Phosphorylation/dephosphorylation of the receiver module at the conserved aspartate residue controls transphosphorylation activity of histidine kinase in sensor protein ArcB of Escherichia coli. J. Biol. Chem. 268(32), 23972–23980.PubMedGoogle Scholar
  34. 34.
    Iuchi, S. and Lin, E.C. (1988) ArcA (dye), a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways. Proc. Natl. Acad. Sci. 85(6), 1888–1892.Google Scholar
  35. 35.
    Lynch, A.S. and Lin, E.C. (1996) Transcriptional control mediated by the ArcA two-component response regulator protein of Escherichia coli : characterization of DNA binding at target promoters. J. Bacteriol. 178(21), 6238–6249.PubMedGoogle Scholar
  36. 36.
    Park, S.J., McCabe, J., Turna, J., and Gunsalus, R.P. (1994) Regulation of the citrate synthase (gltA) gene of Escherichia coli in response to anaerobiosis and carbon supply: role of the arcA gene product. J. Bacteriol. 176(16), 5086–5092.PubMedGoogle Scholar
  37. 37.
    Park, S.J., Cotter, P.A., and Gunsalus, R.P. (1995) Regulation of malate dehydrogenase (mdh) gene expression in Escherichia coli in response to oxygen, carbon, and heme availability. J. Bacteriol. 177(22), 6652–6656.PubMedGoogle Scholar
  38. 38.
    Park, S.J., Tseng, C.P., and Gunsalus, R.P. (1995) Regulation of succinate dehydrogenase (sdhCDAB) operon expression in Escherichia coli in response to carbon supply and anaerobiosis: role of ArcA and Fnr. Mol. Microbiol. 15(3), 473–482.PubMedCrossRefGoogle Scholar
  39. 39.
    Park, S.J., Chao, G., and Gunsalus, R.P. (1997) Aerobic regulation of the sucABCD genes of Escherichia coli, which encode alpha-ketoglutarate dehydrogenase and succinyl coenzyme A synthetase: roles of ArcA, Fnr, and the upstream sdhCDAB promoter. J. Bacteriol. 179(13), 4138–4142.PubMedGoogle Scholar
  40. 40.
    Perrenoud, A. and Sauer, U. (2005) Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli. J. Bacteriol. 187(9), 3171–3179.PubMedCrossRefGoogle Scholar
  41. 41.
    Saier, M.H., Ramseier, T.M., and Reizer, J. (1996) Regulation of carbon utilization. In Escherichia coli and Salmonella : cellular and molecular biology. Edited by Neidhardt, F.C., et al. ASM Press, Washington, DC, USA.Google Scholar
  42. 42.
    Zheng, D., Constantinidou, C., Hobman, J.L., and Minchin, S.D. (2004) Identification of the CRP regulon using in vitro and in vivo transcriptional profiling. Nucleic Acids Res. 32(19), 5874–5893.PubMedCrossRefGoogle Scholar
  43. 43.
    Grainger, D.C., Hurd, D., Harrison, M., Holdstock, J., and Busby, S.J. (2005) Studies of the distribution of Escherichia coli cAMP-receptor protein and RNA polymerase along the E. coli chromosome. Proc. Natl. Acad. Sci. USA. 102(49), 17693–17698.PubMedCrossRefGoogle Scholar
  44. 44.
    Makman, R.S. and Sutherland, E.W. (1965) Adenosine 3',5'-phosphate in Escherichia coli. J. Biol. Chem. 240, 1309–1314.PubMedGoogle Scholar
  45. 45.
    Saier, M.H. and Ramseier, T.M. (1997) The catabolite repressor/activator (Cra) protein of enteric bacteria. J. Bacteriol. 178, 3411–3417.Google Scholar
  46. 46.
    Henikoff, S., Haughn, G.W., Calvo, J.M., and Wallace, J.C. (1988) A large family of bacterial activator proteins. Proc. Natl. Acad. Sci. USA. 85(18), 6602–6606.PubMedCrossRefGoogle Scholar
  47. 47.
    Su, C.H. and Greene, R.C. (1971) Regulation of methionine biosynthesis in Escherichia coli : mapping of the metJ locus and properties of a metJ plus-metJ minus diploid. Proc. Natl. Acad. Sci. USA. 68(2), 367–371.PubMedCrossRefGoogle Scholar
  48. 48.
    Pittard, J., Camakaris, H., and Yang, J. (2005) The TyrR regulon. Mol. Microbiol. 55(1), 16–26.PubMedCrossRefGoogle Scholar
  49. 49.
    Griggs, D. and Johnston, M. (1991) Regulated expression of Gal4 activator gene in yeast provides a sensitive genetic switch for glucose repression. Proc. Natl. Acad. Sci. USA. 88(19), 8597–8601.PubMedCrossRefGoogle Scholar
  50. 50.
    Lohr, D., Venkov, P., and Zlatanova, J. (1995) Transcriptional regulation in the yeast Gal gene family: a complex genetic network. FASEB J. 9, 777–787.PubMedGoogle Scholar
  51. 51.
    Natarajan, K., Meyer, M.R., Jackson, B.M., Slade, D., Roberts, C., Hinnebusch, A.G., and Marton, M.J. (2001) Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol. Cell Biol. 21(13), 4347–4368.PubMedCrossRefGoogle Scholar
  52. 52.
    Lee, T., Rinaldi, N., Robert, F., Odom, D., Bar-Joseph, Z., et al. (2002) A transcriptional regulatory network map for Saccharomyces cerevisiae. Science. 298, 799–804.PubMedCrossRefGoogle Scholar
  53. 53.
    Denis, V., Boucherie, H., Monribot, C., and Daignan-Fornier, B. (1998) Role of the Myb-like protein Bas1p in Saccharomyces cerevisiae : a proteome analysis. Mol. Microbiol. 30(3), 557–566.Google Scholar
  54. 54.
    Xiao, W. and Rank, G. (1990) Branched chain amino acid regulation of the ilv2 locus in Saccharomyces cerevisiae. Genome. 33(4), 596–603.PubMedGoogle Scholar
  55. 55.
    O'Connel, K., Surdin-Kerjan, Y., and Baker, R. (1995) Role of the Saccharomyces cerevisiae general regulatory factor cp1 in methionine biosynthetic gene transcription. Mol. Cell Biol. 15, 1879–1888.Google Scholar
  56. 56.
    Carroll, S.B. (2005) Evolution at two levels: on genes and form. PLoS Biol. 3(7), e245.PubMedCrossRefGoogle Scholar
  57. 57.
    Barrangou, R., Azcarate-Peril, M.A., Duong, T., Conners, S., Kelly, R.M., and Klaenhammer, T.R. (2006) Global analysis of carbohydrate utilization by Lactobacillus acidophilus using cDNA microarrays. Proc. Natl. Acad. Sci. USA. 103(10), 3816–3821.Google Scholar
  58. 58.
    Hua, Q., Yang, C., Baba, T., Mori, H., and Shimizu, K. (2004) Analysis of gene expression in Escherichia coli in response to changes of growth-limiting nutrient in chemostat cultures. Appl. Env. Microbiol. 70(4), 2354–2366.CrossRefGoogle Scholar
  59. 59.
    Oh, M.K. and Liao, J. (2000) Gene expression profiling by DNA microarrays and metabolic fluxes in Escherichia coli. Biotechnol. Prog. 16, 278–286.PubMedCrossRefGoogle Scholar
  60. 60.
    Monod, J.D. (1947) The phenomenon of enzymatic adaptation and its bearing on problems of genetics and cellular differentiation. Growth. 11, 223–289.Google Scholar
  61. 61.
    Jacob, F. and Monod, J. (1961) Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3, 318–356.PubMedCrossRefGoogle Scholar
  62. 62.
    Smeianov, V.V., Wechter, P., Broadbent, J.R., Hughes, J.E., Rodriguez, B.T., et al. (2007) Comparative high-density microarray analysis of gene expression during growth of Lactobacillus helveticus in milk versus rich culture medium. Appl. Environ. Microbiol. 73(8), 2661–2672.PubMedCrossRefGoogle Scholar
  63. 63.
    Durfee, T., Hansen, A.M., Zhi, H., Blattner, F.R., and Jin, D.J. (2008) Transcription profiling of the stringent response in Escherichia coli. J. Bacteriol. 190(3), 1084–1096.PubMedCrossRefGoogle Scholar
  64. 64.
    Gutierrez, R.A., Lejay, L.V., Dean, A., Chiaromonte, F., Shasha, D.E., and Coruzzi, G.M. (2007) Qualitative network models and genome-wide expression data define carbon/nitrogen-responsive molecular machines in Arabidopsis. Genome Biol. 8(1), R7.PubMedCrossRefGoogle Scholar
  65. 65.
    Ma, S., Gong, Q., and Bohnert, H.J. (2006) Dissecting salt stress pathways. J. Exp. Bot. 57(5), 1097–1107.PubMedCrossRefGoogle Scholar
  66. 66.
    Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G., Botstein, D., and Brown, P.O. (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell. 11(12), 4241–4257.PubMedGoogle Scholar
  67. 67.
    Siddiquee, K.A., Arauzo-Bravo, M.J., and Shimizu, K. (2004) Effect of a pyruvate kinase (pykF-gene) knockout mutation on the control of gene expression and metabolic fluxes in Escherichia coli. FEMS Microbiol. Lett. 235(1), 25–33.PubMedCrossRefGoogle Scholar
  68. 68.
    Ideker, T., Thorsson, V., Ranish, J.A., Christmas, R., Buhler, J., et al. (2001) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science. 292(5518), 929–934.PubMedCrossRefGoogle Scholar
  69. 69.
    Hughes, T.R., Marton, M.J., Jones, A.R., Roberts, C.J., Stoughton, R., et al. (2000) Functional discovery via a compendium of expression profiles. Cell. 102(1), 109–126.PubMedCrossRefGoogle Scholar
  70. 70.
    Giaever, G., Chu, A.M., Ni, L., Connelly, C., Riles, L., et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature. 418(6896), 387–391.PubMedCrossRefGoogle Scholar
  71. 71.
    Santangelo, G.M. (2006) Glucose signaling in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 70(1), 253–282.PubMedCrossRefGoogle Scholar
  72. 72.
    Edwards, T.E., Klein, D.J., and Ferre-D'Amare, A.R. (2007) Riboswitches: small-molecule recognition by gene regulatory RNAs. Curr. Opin. Struct. Biol. 17(3), 273–279.Google Scholar
  73. 73.
    Winkler, W., Nahvi, A., and Breaker, R.R. (2002) Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature. 419(6910), 952–956.PubMedCrossRefGoogle Scholar
  74. 74.
    Nahvi, A., Sudarsan, N., Ebert, M., Zou, X., Brown, K.L., and Breaker, R. (2002) Genetic control by a metabolite binding mRNA. Chem. Biol. 9(9), 1043–1049.PubMedCrossRefGoogle Scholar
  75. 75.
    Kim, J.N. and Breaker, R.R. (2008) Purine sensing by riboswitches. Biol. Cell. 100(1), 1–11.PubMedCrossRefGoogle Scholar
  76. 76.
    Kharchenko, P., Church, G.M., and Vitkup, D. (2005) Expression dynamics of a cellular metabolic network. Mol. Syst. Biol. 1, 2005.0016 (online).Google Scholar
  77. 77.
    Ge, H., Liu, Z., Church, G.M., and Vidal, M. (2001) Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae. Nat. Genet. 29 (4), 482–486.PubMedCrossRefGoogle Scholar
  78. 78.
    Zaslaver, A., Mayo, A.E., Rosenberg, R., Bashkin, P., Sberro, H., Tsalyuk, M., Surette, M.G., and Alon, U. (2004) Just-in-time transcription program in metabolic pathways. Nat. Genet. 36(5), 486–491.PubMedCrossRefGoogle Scholar
  79. 79.
    Ihmels, J., Levy, R., and Barkai, N. (2004) Principles of transcriptional control in the metabolic network of Saccharomyces cerevisiae. Nat. Biotechnol. 22(1), 86–92.PubMedCrossRefGoogle Scholar
  80. 80.
    Bilu, Y., Shlomi, T., Barkai, N., and Ruppin, E. (2006) Conservation of expression and sequence of metabolic genes is reflected by activity across metabolic states. PLoS Comput. Biol. 2(8), e106.PubMedCrossRefGoogle Scholar
  81. 81.
    Martinez-Perez, O., Lopez-Sanchez, A., Reyes-Ramirez, F., Floriano, B., and Santero, E. (2007) Integrated response to inducers by communication between a catabolic pathway and its regulatory system. J. Bacteriol. 189(10), 3768–3775.PubMedCrossRefGoogle Scholar
  82. 82.
    Karp, P.D., Ouzounis, C.A., Moore-Kochlacs, C., Goldovsky, L., Kaipa, P., et al. (2005) Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res. 33(19), 6083–6089.PubMedCrossRefGoogle Scholar
  83. 83.
    Caspi, R., Foerster, H., Fulcher, C.A., Hopkinson, R., Ingraham, J., et al. (2006) MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res. 34, D511–D516.PubMedCrossRefGoogle Scholar
  84. 84.
    Karp, P.D., Keseler, I.M., Shearer, A., Latendresse, M., Krummenacker, M., et al. (2007) Multidimensional annotation of the Escherichia coli K-12 genome. Nucleic Acids Res. 35(22), 7577–7590.PubMedCrossRefGoogle Scholar
  85. 85.
    Duarte, N.C., Becker, S.A., Jamshidi, N., Thiele, I., Mo, M.L., Vo, T.D., Srivas, R., and Palsson, BO. (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc. Natl. Acad. Sci. 104(6), 1777–1782.Google Scholar
  86. 86.
    Mueller, L.A., Zhang, P., and Rhee, S.Y. (2003) AraCyc: a biochemical pathway database for Arabidopsis. Plant Physiol. 132(2), 453–460.PubMedCrossRefGoogle Scholar
  87. 87.
    Cherry, J.M., Ball, C., Weng, S., Juvik, G., Schmidt, R., et al. (1997) Genetic and physical maps of Saccharomyces cerevisiae. Nature. 387(6632 Suppl), 67–73.PubMedGoogle Scholar
  88. 88.
    Mewes, H.W., Frishman, D., Gruber, C., Geier, B., Haase, D., et al. (2000) MIPS: a database for genomes and protein sequences. Nucleic Acids Res. 28(1), 37–40.PubMedCrossRefGoogle Scholar
  89. 89.
    Kanehisa, M. and Goto, S. (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30.PubMedCrossRefGoogle Scholar
  90. 90.
    Covert, M.W., Knight, E.M., Reed, J.L., Herrgard, M.J., and Palsson, B.O. (2004) Integrating high-throughput and computational data elucidates bacterial networks. Nature. 429(6987), 92–96.PubMedCrossRefGoogle Scholar
  91. 91.
    Herrgard, M.J., Fong, S.S., and Palsson, B.O. (2006) Identification of genome-scale metabolic network models using experimentally measured flux profiles. PLoS Comput. Biol. 2(7), e72.PubMedCrossRefGoogle Scholar
  92. 92.
    Shlomi, T., Eisenberg, Y., Sharan, R., and Ruppin, E. (2007) A genome-scale computational study of the interplay between transcriptional regulation and metabolism. Mol. Syst. Biol. 3, 101.PubMedCrossRefGoogle Scholar
  93. 93.
    Gat-Viks, I., Tanay, A., and Shamir, R. (2004) Modeling and analysis of heterogeneous regulation in biological networks. J. Comput. Biol. 11(6), 1034–1049.PubMedCrossRefGoogle Scholar
  94. 94.
    Yeang, C.H. and Vingron, M. (2006) A joint model of regulatory and metabolic networks. BMC Bioinformatics. 7, 332.PubMedCrossRefGoogle Scholar
  95. 95.
    Narang, A. (2006) Comparative analysis of some models of gene regulation in mixed-substrate microbial growth. J. Theor. Biol. 242(2), 489–501.PubMedCrossRefGoogle Scholar
  96. 96.
    Kofahl, B. and Klipp, E. (2004) Modelling the dynamics of the yeast pheromone pathway. Yeast. 21(10), 831–850.PubMedCrossRefGoogle Scholar
  97. 97.
    Varner, J.D. (2000) Large-scale prediction of phenotype: concept. Biotechnol. Bioeng. 69(6), 664–678.PubMedCrossRefGoogle Scholar
  98. 98.
    Burgard, A.P., Pharkya, P., and Maranas, C.D. (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84(6), 647–657.PubMedCrossRefGoogle Scholar
  99. 99.
    Patil, K.R., Rocha, I., Forster, J., and Nielsen, J. (2005) Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinformatics. 6, 308.PubMedCrossRefGoogle Scholar
  100. 100.
    Kim, H.U, Kim, T.Y., and Lee, S.Y. (2008) Metabolic flux analysis and metabolic engineering of microorganisms. Mol. Bio. Syst. 4, 113–120.CrossRefGoogle Scholar
  101. 101.
    Tringe, S.G. and Rubin, E.M. (2005) Metagenomics: DNA sequencing of environmental samples. Nat. Rev. Genet. 6(11), 805–814.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Chen-Hsiang Yeang
    • 1
  1. 1.Institute of Statistical Science, Academia SinicaNankangTaiwan, R.O.C

Personalised recommendations