Skip to main content

Therapeutic Targeting of Gene Expression by siRNAs Directed Against BCR-ABL Transcripts in a Patient with Imatinib-Resistant Chronic Myeloid Leukemia

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 487))

Abstract

Within the recent years, RNA interference (RNAi) has become an almost-standard method for in vitro knockdown of any target gene of interest. Now, one major focus is to further explore its potential in vivo, including the development of novel therapeutic strategies. From the mechanism, it becomes clear that small interfering RNAs (siRNAs) play a pivotal role in triggering RNAi. Thus, the efficient delivery of target gene-specific siRNAs is one major challenge in the establishment of therapeutic RNAi. Here we show that in vivo application of targeted nonvirally delivered synthetic bcr-abl siRNA in a female patient with recurrent Philadelphia chromosome positive chronic myeloid leukemia (CML) resistant to imatinib (Y253F mutation) and chemotherapy after allogeneic hematopoietic stem cell transplantation can silence the expression bcr-abl gene. We found a remarkable inhibition of the overexpressed bcr-abl oncogene resulting in increased apoptosis of CML cells. In vivo siRNA application was well tolerated without any clinically adverse events. Our findings imply that the clinical application of synthetic siRNA is feasible, safe and has real potential for genetic-based therapies using synthetic nonviral carriers.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Goldmann, J.M. and Melo, J.V. (2003) Chronic myeloid leukemia—advances in biology and new approaches to treatment. N. Engl. J. Med. 349, 1451–1461.

    Article  Google Scholar 

  2. Melo, J.V. (1996) The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype. Blood 88, 2375–2384.

    PubMed  CAS  Google Scholar 

  3. Dean, M., Fojo, T., and Bates, S. (2005) Tumour stem cells and drug resistance. Nat. Rev. Cancer 5, 275–284.

    Article  PubMed  CAS  Google Scholar 

  4. Elmaagacli, A.H., Freist, A., Hahn, M., et al. (2001) Estimating the relapse stage in chronic myeloid leukaemia patients after allogeneic stem cell transplantation by the amount of bcr-abl fusion transcripts detected using a new real-time polymerase chain reaction method. Br. J. Haemtol. 113, 1072–1075.

    Article  CAS  Google Scholar 

  5. Capdeville, R. and Silberman, S. (2003) Imatinib: a targeted clinical drug development. Semin. Hematol. 40, 15–20.

    Article  PubMed  CAS  Google Scholar 

  6. Druker, B.J., Guilhot, F., O’Brien, R.A., et al. (2006) Long-term benefits of imatinib (IM) for patients newly diagnosed with chronic myelogenous leukemia in chronic phase (CML-CP): the 5-year update from the IRIS study. J. Clin. Oncol. 24, 6506.

    Google Scholar 

  7. Hehlmann, R., Berger, U., and Hochhaus, A. (2005) Chronic myeloid leukemia: a model for oncology. Ann. Hematol. 84, 487–497.

    Article  PubMed  Google Scholar 

  8. Gratwohl, A., Baldomero, H., Horisberger, B., et al. (2002) Current trends in hematopoietic stem cell transplantation in Europe. Blood 100, 2374–2386.

    Article  PubMed  CAS  Google Scholar 

  9. Goldman, J. and Gordon, M. (2006) Why do chronic myelogenous leukemia stem cells survive allogeneic stem cell transplantation or imatinib: does it really matter? Leuk. Lymphoma 47, 1–7.

    Article  CAS  Google Scholar 

  10. Fire, A., Xu, S., Montgomery, M.K., et al. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.

    Article  PubMed  CAS  Google Scholar 

  11. Elbashir, S.M., Harborth, J., Lendeckel, W., et al. (2001) Duplexes of 21- nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498.

    Article  PubMed  CAS  Google Scholar 

  12. Donze, O. and Picard, D. (2002) RNA interference in mammalian cells using siRNAs synthesized with T7 RNA polymerase. Nucleic Acids Res. 30, e46.

    Article  PubMed  Google Scholar 

  13. Mittal, V. (2004) Improving the efficiency of RNA interference in mammals. Nat. Rev. Genet. 5, 355–365.

    Article  PubMed  CAS  Google Scholar 

  14. Schwarz, D.S., Hutvágner, G., Du, T., et al. (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208.

    Article  PubMed  CAS  Google Scholar 

  15. Scherr, M., Battmer, K., Winkler, T., et al. (2003) Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood 101, 1566–1569.

    Article  PubMed  CAS  Google Scholar 

  16. Wohlbold, L., van der Kuip, H., Miething, C., et al. (2003) Inhibition of bcr-abl gene expression by small interfering RNA sensitzes for imatinib mesylate (ST571). Blood 102, 2236–2239.

    Article  PubMed  CAS  Google Scholar 

  17. Elmaagacli, A.H., Koldehoff, M., Peceny, R., et al. (2005) WT1 and BCR-ABL specific small interfering RNA have additive effects in the induction of apoptosis in leukemic cells. Haematologica 90, 326–334.

    PubMed  CAS  Google Scholar 

  18. Koldehoff, M., Steckel, N.K., Beelen, D.W., et al. (2006) Synthetics mall interfering RNAs reduce bcr-abl gene expression in leukaemic cells of de novo Philadelphia (+) acute myeloid leukemia. Clin. Exp. Med. 6, 45–47.

    Article  PubMed  CAS  Google Scholar 

  19. Dass, C.R. (2004) Lipoplex-mediated delivery of nucleic acids: factors affecting in vivo transfection. J. Mol. Med. 82, 579–591.

    Article  PubMed  CAS  Google Scholar 

  20. Fattal, E., Couvreur, P., and Dubernet, C. (2004) “Smart” delivery of antisense oligonucleotides by anionic pH-sensitive liposomes. Adv. Drug Delivery Rev. 56, 931–946.

    Article  CAS  Google Scholar 

  21. Koldehoff, M., Steckel, N.K., Beelen, D.W., et al. (2007) Therapeutic application of small interfering RNA directed against bcr-abl transcripts to a patient with imatinib-resistant chronic myeloid leukaemia. Clin. Exp. Med. 7, 47–55.

    Article  PubMed  CAS  Google Scholar 

  22. de Fougerolles, A., Vornlocher, H.P., Maraganore, J., et al. (2007) Interfering with disease: a progress report on siRNA-based therapeutics. Nat. Rev. Drug Discov. 6, 443–453.

    Article  PubMed  CAS  Google Scholar 

  23. Kawakami, S. and Hashida, M. (2007) Targeted delivery systems of small interfering RNA by systemic administration. Drug Metab. Pharmacokinet. 22, 142–151.

    Article  PubMed  CAS  Google Scholar 

  24. Soutschek, J., Akinc, A., Bramlage, B., et al. (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432, 173–178.

    Article  PubMed  CAS  Google Scholar 

  25. Morrissey, D.V., Lockridge, J.A., Shaw, L., et al. (2005) Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat. Biotechnol. 23, 1002–1007.

    Article  PubMed  CAS  Google Scholar 

  26. Song, E., Zhu, P., Lee, S.-K., et al. (2005) Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat. Biotechnol. 23, 709–717.

    Article  PubMed  CAS  Google Scholar 

  27. Sezaki, H. and Hashida, M. (1984) Macromolecule-drug conjugates in targeted cancer chemotherapy. Crit. Rev. Ther. Drug Carrier Syst. 1, 1–38.

    PubMed  CAS  Google Scholar 

  28. Sewell, K.L., Geary, R.S., Baker, B.F., . et al. (2002) Phase I trial of ISIS 104838, a 2. ′-methoxyethyl modified antisense oligonucleotide targeting tumor necrosis factor-α J. Pharma. Exp. Therap. 303, 1334

    Article  CAS  Google Scholar 

  29. O’Brian, S.M., Cunningham, C.C., Golenkov, A.K., et al. (2005) Phase I and II multicenter study of oblimersen sodium, a Bcl-2 antisense oligonucleotide, in patients with advanced chronic lymphocytic leukaemia. J. Clin. Oncol. 23, 7697–7702.

    Article  Google Scholar 

  30. Kretschmer-Kazemi Far, R. and Sczakiel, G. (2003) The activity of siRNA in mammalian cells is related to structural target accessibility: a comparison with antisense oligonucleotides. Nucleic Acids Res. 31, 4417–4424.

    Article  PubMed  CAS  Google Scholar 

  31. Guo, W. and Lee, R.J. (2000) Efficient gene delivery using anionic liposome-complexed polyplexes (LPDII). Biosci. Rep. 20, 419–432.

    Article  PubMed  CAS  Google Scholar 

  32. Patil, S.D., Rhodes, D.G., and Burgess, D.J. (2005) Biophysical characterization of anionic lipoplexes. BBA-Biomembranes 1711, 1–11.

    Article  PubMed  CAS  Google Scholar 

  33. Advani, R., Peethambaram, P., Lum, B.L., et al. (2004) A phase II trial of aprinocarsen, an antisense oligonucleotide inhibitor of protein kinase C alpha, administered as a 21-day infusion to patients with ovarian carcinoma. Cancer 100, 321–6.

    Article  PubMed  CAS  Google Scholar 

  34. Marcucci, G., Byrd, J.C., Dai, G., et al. (2003) Phase 1 and pharmacodynamic studies of G3139, a BCL-2 antisense oligonucleotide, in combination with chemotherapy in refractory or relapsed leukemia. Blood 101, 425–32.

    Article  PubMed  CAS  Google Scholar 

  35. Goldman, J. (2004) Monitoring minimal residual disease in BCR-ABL. -positive chronic myeloid leukaemia in the imatinib era Curr. Opin. Hematol. 12, 33–39.

    Article  Google Scholar 

  36. Branford, S., Rudzki, Z., Walsh, S., et al. (2002) High frequency of point mutation clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukaemia or Ph-positive acute lymphoblastic leukaemia who develop imatinib (STI571) resistance. Blood 99, 3472–3475.

    Article  PubMed  CAS  Google Scholar 

  37. Branford, S., Rudzki, Z., Walsch, S., et al. (2003) Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis. Blood 102, 276–283.

    Article  PubMed  CAS  Google Scholar 

  38. Dias, N. and Stein, C.A. (2002) Antisense Oligonucleotides: Basic concepts and mechanisms. Mol. Cancer Ther. 1, 347–355.

    PubMed  CAS  Google Scholar 

  39. Wilda, M., Fuchs, U., Wössmann, W., and Borkhardt, A. (2002) Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference. Oncogene 21, 5716–5724.

    Article  PubMed  CAS  Google Scholar 

  40. Hornung, V., Guenthner-Biller, M., Bourquin, C., et al. (2005) Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat. Med. 11, 263–270.

    Article  PubMed  CAS  Google Scholar 

  41. Aigner, A. (2007) Application of RNA interference: current state and prospects for siRNA-based strategies in vivo. Appl. Microbiol. Biotechnol. 76, 9–21.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Katja Ahrens, Melanie Kroll, Silke Gottwald, Ines Riepenhoff, and Christiane Schary for their excellent technical execution of the PCR analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Koldehoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Koldehoff, M., Elmaagacli, A. (2009). Therapeutic Targeting of Gene Expression by siRNAs Directed Against BCR-ABL Transcripts in a Patient with Imatinib-Resistant Chronic Myeloid Leukemia. In: Sioud, M. (eds) siRNA and miRNA Gene Silencing. Methods in Molecular Biology, vol 487. Humana Press. https://doi.org/10.1007/978-1-60327-547-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-547-7_22

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-546-0

  • Online ISBN: 978-1-60327-547-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics