Skip to main content

RNA Interference-Mediated Validation of Genes Involved in Telomere Maintenance and Evasion of Apoptosis as Cancer Therapeutic Targets

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 487))

Abstract

The discovery of new cancer-related therapeutic targets is mainly based on the identification of genes involved in pathways selectively exploited in cancer cells, including those leading to unlimited replicative potential, evasion of apoptosis, angiogenesis, tissue invasion and metastatic spread. Potentially, a gene – or a gene product – is recognized as a cancer target whether its modulation in experimental models can specifically modify or revert the cancer phenotype. As soon as RNA interference (RNAi) – a natural gene silencing mechanism – was demonstrated in mammalian cells, it rapidly became an essential means for gene knockdown in preclinical models, making it possible to define the role of several human genes and to identify those specifically involved in the onset and progression of cancer. Owing to its powerful gene-silencing properties, RNAi has been proposed as a useful tool to validate new therapeutic targets and to develop innovative anticancer therapies. This chapter summarizes the findings from recent studies relying on the use of RNAi-based approaches to functionally validate therapeutic targets related to two tumor hallmarks: the unlimited replicative potential (i.e., activation of telomere maintenance mechanisms) and evasion of apoptosis (i.e., up-regulation of anti-apoptotic factors).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Blasco, M.A. (2005) Telomeres and human disease: ageing, cancer and beyond. Nat. Rev. Genet. 6, 611–622.

    Article  PubMed  CAS  Google Scholar 

  2. Autexier, C. and Greider, C.W. (1996) Telomerase and cancer: revisiting the telomere hypothesis. Trends Biochem. Sci. 21, 387–391.

    PubMed  CAS  Google Scholar 

  3. Kim, S.H., Kaminker, P., and Campisi, J. (2002) Telomeres, aging and cancer: in search of a happy ending. Oncogene 21, 503–511.

    Article  CAS  Google Scholar 

  4. de Lange, T. (2005) Telomere-related genome instability in cancer. Cold Spring Harb. Symp. Quant. Biol. 70, 197–204.

    Article  PubMed  CAS  Google Scholar 

  5. Rodier, F., Kim, S.H., Nijjar, T., . et al. (2005) Cancer and aging: The importance of telomeres in genome maintenance. Int. J. Biochem. Cell. Biol. 37, 977–990.

    Article  PubMed  CAS  Google Scholar 

  6. de Lange, T. (2004) T-loops and the origin of telomeres. Nat. Rev. Mol. Cell. Biol. 5, 323–329.

    Article  PubMed  CAS  Google Scholar 

  7. de Lange, T. (2002) Protection of mammalian telomeres. Oncogene 21, 532–540.

    Article  PubMed  CAS  Google Scholar 

  8. Hanahan, D., and Weinberg, R.A. (2000) The hallmarks of cancer. Cell 100, 57–70.

    Article  PubMed  CAS  Google Scholar 

  9. Hahn, W.C. and Meyerson, M. (2001) Telomerase activation, cellular immortalization and cancer. Ann. Med. 2, 123–129.

    Article  Google Scholar 

  10. Shay, J.W., and Bacchetti, S. (1997) A survey of telomerase activity in human cancer. Eur. J. Cancer 33, 787–791.

    Article  PubMed  CAS  Google Scholar 

  11. Henson, J.D., Neumann, A.A., Yeager, T.R. and Reddel, R.R. (2002) Alternative lengthening of telomeres in mammalian cells. Oncogene 21, 598–610.

    Article  PubMed  CAS  Google Scholar 

  12. Reddel, R.R., and Bryan, T.M. (2003) Alternative lengthening of telomeres: dangerous road less travelled. Lancet 361, 1840.

    Article  PubMed  Google Scholar 

  13. Muntoni, A. and Reddel, R.R. (2005) The first molecular details of ALT in human tumor cells. Hum. Mol. Genet. 14, (Spec No. 2)R191–196.

    Article  PubMed  CAS  Google Scholar 

  14. Folini, M., and Zaffaroni, N. (2005) Targeting telomerase by antisense-based approaches: perspectives for new anti-cancer therapies. Curr. Pharm. Des. 11, 1105–1117.

    Article  PubMed  CAS  Google Scholar 

  15. Harrington, L., Zhou, W., McPhail, T., . et al. (1997) Human telomerase contains evolutionarily conserved catalytic and structural subunits. Genes Dev. 11, 3109–3115.

    Article  PubMed  CAS  Google Scholar 

  16. Feng, J., Funk, W.D., Wang, S.S., . et al. (1995) The RNA component of human telomerase. Science 269, 1236–1241.

    Article  PubMed  CAS  Google Scholar 

  17. Cong, Y.S., Wright, W.E., and Shay, J.W. (2002) Human telomerase and its regulation. Microbiol. Mol. Biol. Rev. 66, 407–425.

    Article  PubMed  CAS  Google Scholar 

  18. Yi, X., White, D.M., Aisner, D.L., . et al. (2000) An alternate splicing variant of the human telomerase catalytic subunit inhibits telomerase activity. Neoplasia 2, 433–440.

    Article  PubMed  CAS  Google Scholar 

  19. Blackburn, E.H. (2005) Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. FEBS Lett. 579, 859–862.

    Article  PubMed  CAS  Google Scholar 

  20. Cao, Y., Li, H., Deb, S., and Liu, J.P. (2002) TERT regulates cell survival independent of telomerase enzymatic activity. Oncogene 21, 3130–3138.

    Article  PubMed  CAS  Google Scholar 

  21. Sharma, G.G., Gupta, A., Wang, H., . et al. (2003) hTERT associates with human telomeres and enhances genomic stability and DNA repair. Oncogene 22, 131–146.

    Article  PubMed  CAS  Google Scholar 

  22. Harrington, L., McPhail, T., Mar, V., . et al. (1997) A mammalian telomerae-associated protein. Science 275, 973–977.

    Article  PubMed  CAS  Google Scholar 

  23. Smogorzewska, A. and de Lange, T. (2004) Regulation of telomerase by telomeric proteins. Annu. Rev. Biochem. 73, 177–208.

    Article  PubMed  CAS  Google Scholar 

  24. Evans, S.K., and Lundblad, V. (1999) Est1 and Cdc13 as comediators of telomerase access. Science 286, 117–120.

    Article  PubMed  CAS  Google Scholar 

  25. Montanaro, L., Brigotti, M., Clohessy, J., . et al. (2006) Dyskerin expression influences the level of ribosomal RNA pseudo-uridylation and telomerase RNA component in human breast cancer. J. Pathol. 210, 10–18.

    Article  PubMed  CAS  Google Scholar 

  26. Marrone, A., and Mason, P.J. (2003) Dyskeratosis congenita. Cell. Mol. Life. Sci. 60, 507–517.

    Article  PubMed  CAS  Google Scholar 

  27. de Lange, T. (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 19, 2100–2110.

    Article  PubMed  CAS  Google Scholar 

  28. Broccoli, D., Smogorzewska, A., Chong, L., and de Lange, T. (1997) Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat. Genet. 17, 231–235.

    Article  PubMed  CAS  Google Scholar 

  29. Baumann, P., Podell, E., and Cech, T.R. (2002) Human Pot1 (protection of telomeres) protein: cytolocalization, gene structure, and alternative splicing. Mol. Cell. Biol. 22, 8079–8087.

    Article  PubMed  CAS  Google Scholar 

  30. van Steensel, B. and de Lange, T. (1997) Control of telomere length by the human telomeric protein TRF1. Nature 385, 740–743.

    Article  PubMed  CAS  Google Scholar 

  31. Kim, S.H., Kaminker, P., and Campisi, J. (2003) TIN2, a new regulator of telomere length in human cells. Nat. Genet. 23, 405–412.

    Google Scholar 

  32. Seimiya, H. (2006) The telomeric PARP, tankyrases, as targets for cancer therapy. Br. J. Cancer 94, 341–345.

    Article  PubMed  CAS  Google Scholar 

  33. Cook, B.D., Dynek, J.N., Chang, W., . et al. (2002) Role for the related poly(ADP-Ribose) polymerases tankyrase 1 and 2 at human telomeres. Mol. Cell. Biol. 22, 332–342.

    Article  PubMed  CAS  Google Scholar 

  34. Smith, S., Giriat, I., Schitt, A., and de Lange, T. (1998) Tankyrase, a poly (ADP.ribose) polymerase at human telomeres. Science 282, 1484–1487.

    Article  PubMed  CAS  Google Scholar 

  35. Donigian, J.R. and de Lange, T. (2007) The role of the poly(ADP-ribose) polymerase tankyrase1 in telomere length control by the TRF1 component of the shelterin complex. J. Biol. Chem. 282, 22662–22667.

    Article  PubMed  CAS  Google Scholar 

  36. Stansel, R.M., de Lange, T., and Griffith, J.D. (2001) T-loop assembly in vitro involves binding of TRF2 near the 3′ telomeric overhang. EMBO J. 20, 5532–5540.

    Article  PubMed  CAS  Google Scholar 

  37. Hockemeyer, D., Sfeir, A.J., Shay, J.W., . et al. (2005) POT1 protects telomeres from a transient DNA damage response and determines how human chromosomes ends. EMBO J. 24, 2667–2678.

    Article  PubMed  CAS  Google Scholar 

  38. Green, D.R., and Evan, G.I. (2002) A matter of life and death. Cancer Cell 1, 19–30.

    Article  PubMed  CAS  Google Scholar 

  39. Nagata, S. (1997) Apoptosis by death factor. Cell 88, 355–365.

    Article  PubMed  CAS  Google Scholar 

  40. Cryns, V., and Yuan, J. (1999) Proteases to die for. Genes Dev. 12, 1551–1570.

    Article  Google Scholar 

  41. Hunter, A., LaCasse, E.C., and Korneluk, R.G. (2007) The inhibitors of apoptosis (IAPs) as cancer targets. Apoptosis 12, 1543–1568.

    Article  PubMed  CAS  Google Scholar 

  42. Tanaka, K., Iwamoto, S., Gon, G., . et al. (2000) Expression of survivin and its relationship to loss of apoptosis in breast carcinomas. Clin. Cancer Res. 6, 127–134.

    PubMed  CAS  Google Scholar 

  43. Yang, L., Cao, Z., Yan, H., and Wood, W.C. (2003) Coexistence of high levels of apoptotic signaling and inhibitor of apoptosis proteins in human tumor cells: implication for cancer specific therapy. Cancer Res. 63, 6815–6824.

    PubMed  CAS  Google Scholar 

  44. Hong, X., Lei, L., and Glas, R. (2003) Tumors acquire inhibitor of apoptosis protein (IAP)-mediated apoptosis resistance through altered specificity of cytosolic proteolysis. J. Exp. Med. 197, 1731–1743.

    Article  PubMed  CAS  Google Scholar 

  45. Roy, N., Mahadevan, M.S., McLean, M., . et al. (1995) The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell 80, 167–178.

    Article  PubMed  CAS  Google Scholar 

  46. Maier, J.K., Lahoua, Z., Gendron, N.H., . et al. (2002) The neuronal apoptosis inhibitory protein is a direct inhibitor of caspases 3 and 7. J. Neurosci. 22, 2035–2043.

    PubMed  CAS  Google Scholar 

  47. Davoodi, J., Lin, L., Kelly, J., . et al. (2004) Neuronal apoptosis-inhibitory protein does not interact with Smac and requires ATP to bind caspase-9. J. Biol. Chem. 279, 40622–40628.

    Article  PubMed  CAS  Google Scholar 

  48. Sanna, M.G., de Silva Correia, J., Ducrey, O., . et al. (2002) IAP supression of apoptosis involves distinct mechanisms: the TAK1/JNK1 signaling cascade and caspase inhibition. Mol. Cell Biol. 22, 1754–1766.

    Article  PubMed  CAS  Google Scholar 

  49. Yamamoto, K., Abe, S., Nakagawa, Y., . et al. (2004) Expression of IAP family proteins in myelodysplastic syndromes transforming to overt leukemia. Leukemia Res. 28, 1203–1211.

    Article  CAS  Google Scholar 

  50. Nakagawa, Y., Hasegawa, M., Kurata, M., . et al. (2005) Expression of IAP-Family Proteins in Adult Acute Mixed Lineage Leukemia (AMLL). Am. J. Hematol. 78, 173–180.

    Article  PubMed  CAS  Google Scholar 

  51. Nemoto, T., Kitagawa, M., Hasegawa, M., . et al. (2004) Expression of IAP family proteins in esophageal cancer. Exp. Mol. Pathol. 76, 253–259.

    Article  PubMed  CAS  Google Scholar 

  52. Eckelman, B.P. and Salvesen, G.S. (2006) The human anti apoptotic proteins cIAP1 and cIAP2 bind but do not inhibit caspases. J. Biol. Chem. 281, 3254–3260.

    Article  PubMed  CAS  Google Scholar 

  53. Deveraux, Q.L., Roy, N., Stennicke, H.R., . et al. (1998) IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J. 17, 2215–2223.

    Article  PubMed  CAS  Google Scholar 

  54. Srinivasula, S.M., Hegde, R., Saleh, A., . et al. (2001) A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 410, 112–116.

    Article  PubMed  CAS  Google Scholar 

  55. Stennicke, H.R., Ryan, C.A., and Salvesen, G.S. (2002) Reprieval from execution: the molecular basis of caspase inhibition. Trends Biochem. Sci. 27, 94–101.

    Article  PubMed  CAS  Google Scholar 

  56. Suzuki, Y., Nakabayashi, Y., Nakata, K., . et al. (2001) X-linked inhibitor of apoptosis protein (XIAP) inhibits caspase-3 and -7 in distinct modes. J. Biol. Chem. 276, 27058–27063.

    Article  PubMed  CAS  Google Scholar 

  57. Suzuki, Y., Nakabayashi, Y., and Takahashi, R. (2001) Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc. Natl. Acad. Sci. USA 98, 8662–8667.

    Article  PubMed  CAS  Google Scholar 

  58. Levkau, B., Garton, K.J., Ferri, N., . et al. (2001) XIAP induces cell-cycle arrest and activates nuclear factorkappaB: new survival pathways disabled by caspase-mediated cleavage during apoptosis of human endothelial cells. Circ. Res. 88, 282–290.

    PubMed  CAS  Google Scholar 

  59. Kaur, S., Wang, F., Venkatraman, M., and Arsura, M. (2005) X-linked inhibitor of apoptosis (XIAP) inhibits c-Jun N-terminal kinase 1 (JNK1) activation by transforming growth factor beta1 (TGF-beta1) through ubiquitin-mediated proteosomal degradation of the TGF-beta1-activated kinase 1 (TAK1). J. Biol. Chem. 280, 38599–38608.

    Article  PubMed  CAS  Google Scholar 

  60. Mufti, A.R., Burstein, E., and Duckett, C.S. (2007) XIAP: cell death regulation meets copper homeostasis. Arch. Biochem. Biophys. 463, 168–174.

    Article  PubMed  CAS  Google Scholar 

  61. Tamm, I., Richter, S., Oltersdorf, D., . et al. (2004) High expression levels of x-linked inhibitor of apoptosis protein and survivin correlate with poor overall survival in childhood de novo acute myeloid leukemia. Clin. Cancer Res. 10, 3737–3744.

    Article  PubMed  CAS  Google Scholar 

  62. Mizutani, Y., Nakanishi, H., Li, Y.N., . et al. (2007) Overexpression of XIAP expression in renal cell carcinoma predicts a worse prognosis. Int. J. Oncol. 30, 919–925.

    PubMed  CAS  Google Scholar 

  63. Seligson, D.B., Hongo, F., Huerta-Yepez, S., . et al. (2007) Expression of X-Linked Inhibitor of Apoptosis Protein Is a Strong Predictor of Human Prostate Cancer Recurrence. Clin. Cancer Res. 13, 6056–6063.

    Article  PubMed  CAS  Google Scholar 

  64. Ferreira, C.G., van der Valk, P., Span, S.W., . et al. (2001) Expression of x-linked inhibitor of apoptosis as a novel prognostic marker in radically resected non-small cell lung cancer patients. Clin. Cancer Res. 7, 2468–2474.

    PubMed  CAS  Google Scholar 

  65. Ferreira, C.G., van der Valk, P., Span, S.W., . et al. (2001) Assessment of IAP (inhibitor of apoptosis) proteins as predictors of response to chemotherapy in advanced non–small-cell lung cancer patients. Ann. Oncol. 12, 799–805.

    Article  PubMed  CAS  Google Scholar 

  66. Schimmer, A.D., Dalili, S., Batey, R.A., and Riedl, S.J. (2006) Targeting XIAP for the treatment of malignancy. Cell Death Differ. 13, 179–188.

    Article  PubMed  CAS  Google Scholar 

  67. Holcik, M., Yeh, C., Korneluk, R.G., and Chow, T. (2000) Translational upregulation of X-linked inhibitor of apoptosis (XIAP) increases resistance to radiation induced cell death. Oncogene 19, 4174–4177.

    Article  PubMed  CAS  Google Scholar 

  68. Cheung, H.H., LaCasse, E.C., and Korneluk, R.G. (2006) X-Linked Inhibitor of Apoptosis Antagonism: Strategies in Cancer Treatment. Clin. Cancer Res. 12, 3238–3242.

    Article  PubMed  CAS  Google Scholar 

  69. Honda, R., Korner, R., and Nigg, E.A. (2004) Exploring the functional interactions between aurora B, INCENP, and survivin in mitosis. Mol. Biol. Cell 14, 3325–3341.

    Article  CAS  Google Scholar 

  70. Wheatley, S.P., Carvalho, A., Vagnarelli, P., and Earnshaw, W.C. (2001) INCENP is required for proper targeting of survivin to the centromeres and the anaphase spindle during mitosis. Curr. Biol. 11, 886–890.

    Article  PubMed  CAS  Google Scholar 

  71. Gassmann, R., Carvalho, A., Henzing, A.J.. et al. (2004) Borealin: a novel chromosomal passenger requied for stability of the bipolar mitotic spindle. J. Cell. Biol. 166, 179–191.

    Article  PubMed  CAS  Google Scholar 

  72. Pennati, M., Folini, M., and Zaffaroni, N. (2007) Targeting survivin in cancer therapy: fulfilled promises and open questions. Carcinogenesis 28, 1133–1139.

    Article  PubMed  CAS  Google Scholar 

  73. Altieri, D.C. (2006) The case of survivin as a regulator of microtubule dynamics and cell-death decisions. Curr. Opin. Cell Biol. 18, 609–615.

    Article  PubMed  CAS  Google Scholar 

  74. Colnaghi, R., Connell, C.M., Barrett, R.M.A., and Wheatley, S.P. (2006) Separating the anti-apoptotic and mitotic roles of survivin. J. Biol. Chem. 281, 33450–33456.

    Article  PubMed  CAS  Google Scholar 

  75. Stauber, R.H., Mann, W., and Knauer, S.K. (2007) Nuclear and cytoplasmic survivin: molecular mechanisms, prognostic, and theraputic potential. Cancer Res. 67, 5999–6002.

    Article  PubMed  CAS  Google Scholar 

  76. Caldas, H., Jiang, Y., Holloway, M.P., . et al. (2005) Survivin splice variants regulate the balance between proliferation and cell death. Oncogene 24, 1994–2007.

    Article  PubMed  CAS  Google Scholar 

  77. Zaffaroni, N., Pennati, M., Colella, G., . et al. (2002) Expression of the anti-apoptotic gene survivin correlates with taxol resistance in human ovarian cancer. Cell Mol. Life Sci. 59, 1406–1412.

    Article  PubMed  CAS  Google Scholar 

  78. Zhang, M., Mukherjee, N., Bermudez, R.S., . et al. (2005) Adenovirus-mediated inhibition of survivin expression sensitizes human prostate cancer cells to paclitaxel in vitro and in vivo. Prostate 64, 293–302.

    Article  PubMed  CAS  Google Scholar 

  79. Asanuma, K., Moriai, R., and Yajima, T. (2000) Survivin as a radio-resistance factor in pancreatic cancer. Jap. J. Cancer Res. 91, 1204–1209.

    Article  CAS  Google Scholar 

  80. Qiu, X.B. and Goldberg, A.L. (2005) The membrane-associated inhibitor of apoptosis protein, BRUCE/Apollon, antagonizes both the precursor and mature forms of Smac and caspase-9. J. Biol. Chem. 280, 174–182.

    PubMed  CAS  Google Scholar 

  81. Hao, Y., Sekine, S., Kawabata, A., . et al. (2004) Apollon ubiquitinates SMAC and caspase-9, and has an essential cytoprotection function. Nat. Cell Biol. 6, 849–860.

    Article  PubMed  CAS  Google Scholar 

  82. Chen, Z., Naito, M., Hori, S., . et al. (1999) A human IAP-family gene, apollon, expressed in human brain cancer cells. Biochem. Biophys. Res. Commun. 264, 847–854.

    Article  PubMed  CAS  Google Scholar 

  83. Liu, B., Han, M., Wen, J.K., and Wang, L. (2007) Livin/ML-IAP as a new target for cancer treatment. Cancer Lett. 250, 168–176.

    Article  PubMed  CAS  Google Scholar 

  84. Shin, H., Renatus, M., Eckelman, B.P., . et al. (2005) The BIR domain of IAP-like protein 2 is conformationally unstable: implications for caspase inhibition. Biochem. J. 385, 1–10.

    Article  PubMed  CAS  Google Scholar 

  85. Chatterjee-Kishore, M., and Miller, C.P. (2005) Exploring the sounds of silence: RNAi-mediated gene silencing for target identification and validation. Drug Discov. Today 10, 1559–1565.

    Article  PubMed  CAS  Google Scholar 

  86. Aagaard, L. and Rossi, J.J. (2007) RNAi therapeutics: principles, prospects and challenges. Adv. Drug Deliv. Rev. 59, 75–86.

    Article  PubMed  CAS  Google Scholar 

  87. de Fougerolles, A., Vornlocher, H.P., Maraganore, J., and Lieberman, J. (2007) Interfering with disease: a progress report on siRNA-based therapeutics. Nat. Rev. Drug Discov. 6, 443–453.

    Article  PubMed  CAS  Google Scholar 

  88. Dykxhoorn, D.M., Palliser, D., and Lieberman, J. (2006) The silent treatment: siRNAs as small molecule drugs. Gene Ther. 13, 541–552.

    Article  PubMed  CAS  Google Scholar 

  89. Dykxhoorn, D.M. and Lieberman, J. (2006) Knocking down disease with siRNAs. Cell 126, 231–235.

    Article  PubMed  CAS  Google Scholar 

  90. Kosciolek, B.A., Kalantidis, K., Tabler, M., and Rowley, P.T. (2003) Inhibition of telomerase activity in human cancer cells by RNA interference. Mol. Cancer Ther. 2, 209–216.

    Article  PubMed  CAS  Google Scholar 

  91. de Souza Nascimento, P., Alves, G., and Fiedler, W. (2006) Telomerase inhibition by an siRNA directed against hTERT leads to telomere attrition in HT29 cells. Oncol. Rep. 16, 423–428.

    PubMed  Google Scholar 

  92. Nakamura, M., Masutomi, K., Kyo, S., . et al. (2005) Efficient inhibition of human telomerase reverse transcriptase expression by RNA interference sensitizes cancer cells to ionizing radiation and chemotherapy. Hum. Gene Ther. 16, 859–868.

    Article  PubMed  CAS  Google Scholar 

  93. Kurvinen, K., Syrjanen, S., and Johansson, B. (2006) Long-term suppression of telomerase expression in HeLa cell clones, transfected with an expression vector carrying siRNA targeting hTERT mRNA. Int. J. Oncol. 29, 279–288.

    PubMed  CAS  Google Scholar 

  94. Wang, R., Lin, F., Wang, X., . et al. (2007) The therapeutic potential of survivin promoter-driven siRNA on suppressing tumor growth and enhancing radiosensitivity of human cervical carcinoma cells via downregulating hTERT gene expression. Cancer Biol. Ther. 6, (8)2582.

    Google Scholar 

  95. Gandellini, P., Folini, M., Bandiera, R., . et al. (2007) Down-regulation of human telomerase reverse transcriptase through specific activation of RNAi pathway quickly results in cancer cell growth impairment. Biochem Pharmacol. 73, 1703–1714.

    Article  PubMed  CAS  Google Scholar 

  96. Zou, L., Zhang, P., Luo, C., and Tu, Z. (2006) shRNA-targeted hTERT suppress cell proliferation of bladder cancer by inhibiting telomerase activity. Cancer Chemother. Pharmacol. 57, 328–334.

    Article  PubMed  CAS  Google Scholar 

  97. Zhang, P.H., Zou, L., and Tu, Z.G. (2006) RNAi-hTERT inhibition hepatocellular carcinoma cell proliferation via decreasing telomerase activity. J. Surg. Res. 131, 143–149.

    Article  PubMed  CAS  Google Scholar 

  98. Wang, Y., Duan, H.G., Chen, S.M., . et al. (2007) Effect of RNA interference targeting human telomerase reverse transcriptase on telomerase and its related protein expression in nasopharyngeal carcinoma cells. J. Laryngol. Otol. 121, 476–482.

    Article  PubMed  Google Scholar 

  99. Pallini, R., Sorrentino, A., Pierconti, F., . et al. (2006) Telomerase inhibition by stable RNA interference impairs tumor growth and angiogenesis in glioblastoma xenografts. Int. J. Cancer 118, 2158–2167.

    Article  PubMed  CAS  Google Scholar 

  100. Zhao, P., Wang, C., Fu, Z., . et al. (2007) Lentiviral vector mediated siRNA knock-down of hTERT results in diminished capacity in invasiveness and in vivo growth of human glioma cells in a telomere length-independent manner. Int. J. Oncol. 31, 361–368.

    PubMed  CAS  Google Scholar 

  101. Del Bufalo, D., Rizzo, A., Trisciuoglio, D., . et al. (2005) Involvement of hTERT in apoptosis induced by interference with bcl-2 expression and function. Cell Death Differ. 12, 1429–1438.

    Article  PubMed  CAS  Google Scholar 

  102. Massard, C., Zermati, Y., Pauleau, A.L., . et al. (2006) hTERT: A novel endogenous inhibitor of the mitochondrial cell death pathway. Oncogene 25, 4505–4514.

    Article  PubMed  CAS  Google Scholar 

  103. Lai, S.R., Cunningham, A.P., Huynh, V.Q., . et al. (2007) Evidence of extra-telomeric effects of hTERT and its regulation involving a feedback loop. Exp Cell Res. 313, 322–330.

    Article  PubMed  CAS  Google Scholar 

  104. Li, S., Rosenberg, J.E., Donjacour, A.A., . et al. (2004) Rapid inhibition of cancer cell growth induced by lentiviral delivery and expression of mutant-template telomerase RNA and anti-telomerase short-interfering RNA. Cancer Res. 64, 4833–4840.

    Article  PubMed  CAS  Google Scholar 

  105. Li, S., Crothers, J., Haqq, C.M., and Blackburn, E.H. (2005) Cellular and gene expression responses involved in the rapid growth inhibition of human cancer cells by RNA interference-mediated depletion of telomerase RNA. J. Biol. Chem. 280, 23709–23717.

    Article  PubMed  CAS  Google Scholar 

  106. Kelland, L. (2007) Targeting the limitless replicative potential of cancer: the telomerase/telomere pathway. Clin. Cancer Res. 13, 4960–4963.

    Article  PubMed  CAS  Google Scholar 

  107. Salhab, M., Jiang, W.G., Newbold, R.F., and Mokbel, K. (2007) The expression of gene transcripts of telomere-associated genes in human breast cancer: Correlation with clinico-pathological parameters and clinical outcome. Breast Cancer Res. Treat. doi:10.1007/s10549-007-9622-8.

    Google Scholar 

  108. Goldkorn, A., and Blackburn, E.H. (2006) Assembly of mutant-template telomerase RNA into catalytically active telomerase ribonucleoprotein that can act on telomeres is required for apoptosis and cell cycle arrest in human cancer cells. Cancer Res. 66, 5763–5771.

    Article  PubMed  CAS  Google Scholar 

  109. Ning, H., Li, T., Zhao, L., . et al. (2006) TRF2 promotes multidrug resistance in gastric cancer cells. Cancer Biol. Ther. 5, 950–956.

    Article  PubMed  CAS  Google Scholar 

  110. Yang, Q., Zheng, Y.L., and Harris, C.C. (2005) POT1 and TRF2 cooperate to maintain telomeric integrity. Mol. Cell. Biol. 25, 1070–1080.

    Article  PubMed  CAS  Google Scholar 

  111. Donigian, J.R., and de Lange, T. (2007) The role of the poly(ADP-ribose) polymerase Tankyrase 1 in telomere length control by TRF1 componenet of the shelterin complex. J. Biol. Chem. 282, 22662–22667.

    Article  PubMed  CAS  Google Scholar 

  112. Dynek, J.N. and Smith, S. (2004) Resolution of sister telomere association is required for progression through mitosis. Science 304, 60–62.

    Article  CAS  Google Scholar 

  113. Chang, W., Dynek, J.N., and Smith, S. (2005) NuMA is a major acceptor of poly(ADP-ribosyl)ation by tankyrase 1 in mitosis. Biochem. J. 391, (Pt 2)e5–6.

    Google Scholar 

  114. Jiang, W.Q., Zhong, Z.H., Henson, J.D., and Reddel, R.R. (2007) Identification of by methionine restriction and RNA interference. Oncogene 26, 4635–4647.

    Article  PubMed  CAS  Google Scholar 

  115. Zhong, Z.H., Jiang, W.Q., Cesare, A.J., . et al. (2007) Disruption of telomere maintenance by depletion of the MRE11/RAD50/NBS1 complex in cells that use alternative lengthening of telomeres. J. Biol. Chem. 282, 29314–29322.

    Article  PubMed  CAS  Google Scholar 

  116. Lima, R.T., Martins, L.M., Guimaraes, J.E., . et al. (2004) Specific downregulation of bcl-2 and xIAP by RNAi enhances the effects of chemotherapeutic agents in MCF-7 human breast cancer cells. Cancer Gene Ther. 11, 309–316.

    Article  PubMed  CAS  Google Scholar 

  117. Chawla-Sarkar, M., Bae, S.I., Reu, F.J., Jacobs, B.S., Lindner, D.J., and Borden, E.C. (2004) Downregulation of Bcl-2, FLIP or IAPs (XIAP and survivin) by siRNAs sensitizes resistant melanoma cells to Apo2L/TRAIL-induced apoptosis. Cell Death Differ. 11, 915–923.

    Article  PubMed  CAS  Google Scholar 

  118. Yamaguchi, Y., Shiraki, K., Fuke, H., . et al. (2005) Targeting of X-linked inhibitor of apoptosis protein or survivin by short interfering RNAs sensitize hepatoma cells to TNF-related apoptosis-inducing ligand- and chemotherapeutic agent-induced cell death. Oncol. Rep. 14, 1311–1316.

    PubMed  CAS  Google Scholar 

  119. Zhang, Y., Wang, Y., Gao, W., . et al. (2006) Transfer of siRNA against XIAP induces apoptosis and reduces tumor cells growth potential in human breast cancer in vitro and in vivo. Breast Cancer Res. Treat. 96, 267–277.

    Article  PubMed  CAS  Google Scholar 

  120. Shrikhande, S.V., Kleeff, J., Kayed, H., . et al. (2006) Silencing of X-linked inhibitor of apoptosis (XIAP) decreases gemcitabine resistance of pancreatic cancer cells. Anticancer Res. 26, 3265–3273.

    PubMed  CAS  Google Scholar 

  121. Chen, J., Xiao, X.Q., Deng, C.M., . et al. (2006) Downregulation of xIAP expression by small interfering RNA inhibits cellular viability and increases chemosensitivity to methotrexate in human hepatoma cell line HepG2. J. Chemother. 18, 525–531.

    PubMed  CAS  Google Scholar 

  122. Zhang, S., Ding, F., Luo, A., . et al. (2007) XIAP is Highly Expressed in Esophageal Cancer and its Downregulation by RNAi Sensitizes Esophageal Carcinoma Cell Lines to Chemotherapeutics. Cancer Biol Ther. 6, 973–980.

    PubMed  CAS  Google Scholar 

  123. Lee, T.J., Jung, E.M., Lee, J.T., . et al. (2006) Mithramycin A sensitizes cancer cells to TRAIL-mediated apoptosis by down-regulation of XIAP gene promoter through Sp1 sites. Mol. Cancer Ther. 5, 2737–2746.

    Article  PubMed  CAS  Google Scholar 

  124. Shrader, M., Pino, M.S., Lashinger, L., . et al. (2007) Gefitinib reverses TRAIL resistance in human bladder cancer cell lines via inhibition of AKT-mediated X-linked inhibitor of apoptosis protein expression. Cancer Res. 67, 1430–1435.

    Article  PubMed  CAS  Google Scholar 

  125. Ohnishi, K., Scuric, Z., Schiestl, R.H., . et al. (2006) siRNA targeting NBS1 or XIAP increases radiation sensitivity of human cancer cells independent of TP53 status. Radiat. Res. 166, 454–462.

    Article  PubMed  CAS  Google Scholar 

  126. Lopes, R.B., Gangeswaran, R., McNeish, I.A., . et al. (2007) Expression of the IAP protein family is dysregulated in pancreatic cancer cells and is important for resistance to chemotherapy. Int. J. Cancer. 120, 2344–2352.

    Article  PubMed  CAS  Google Scholar 

  127. Pan, Q., Liu, B., Liu, J., . et al. (2007) Synergistic antitumor activity of XIAP-shRNA and TRAIL expressed by oncolytic adenoviruses in experimental HCC. Acta Oncol. 11, 1–10.

    Google Scholar 

  128. Carvalho, A., Carmena, M., Sambade, C., . et al. (2003) Survivin is required for stable checkpoint activation in taxol-treated HeLa cells. J. Cell Sci. 116, 2987–2998.

    Article  PubMed  CAS  Google Scholar 

  129. Tsuji, N., Asanuma, K., Kobayashi, D., . et al. (2005) Introduction of a survivin gene-specific small inhibitory RNA inhibits growth of pancreatic cancer cells. Anticancer Res. 25, 3967–3972.

    PubMed  CAS  Google Scholar 

  130. Ai, Z., Yin, L., Zhou, X., . et al. (2006) Inhibition of survivin reduces cell proliferation and induces apoptosis in human endometrial cancer. Cancer 107, 746–756.

    Article  PubMed  CAS  Google Scholar 

  131. Congmin, G., Mu, Z., Yihui, M., and Hanliang, L. (2006) Survivin attractive target for RNAi in non-Hodgkin’s lymphoma, Daudi cell line as a model. Leuk. Lymphoma 47, 1941–1948.

    Article  PubMed  CAS  Google Scholar 

  132. Sarthy, A.V., Morgan-Lappe, S.E., Zakula, D., . et al. (2007) Survivin depletion preferentially reduces the survival of activated K-Ras-transformed cells. Mol Cancer Ther. 6, 269–276.

    Article  PubMed  CAS  Google Scholar 

  133. Sato, A., Ito, K., Asano, T., . et al. (2007) Synergistic effect of survivin-specific small interfering RNA and topotecan in renal cancer cells: topotecan enhances liposome-mediated transfection by increasing cellular uptake. Int J Oncol. 30, 695–700.

    PubMed  CAS  Google Scholar 

  134. Wuttig, D., Kunze, D., Fuessel, S., . et al. (2007) Are overexpressed alternative survivin transcripts in human bladder cancer suitable targets for siRNA-mediated in vitro inhibition. Int. J. Oncol. 30, 1317–1324.

    PubMed  CAS  Google Scholar 

  135. Kappler, M., Rot, S., Taubert, H., et al. (2007) The effects of knockdown of wild-type survivin, survivin-2B or survivin-Delta3 on the radiosensitization in a soft tissue sarcoma cells in vitro under different oxygen conditions. Cancer Gene Ther. doi: 10.1038.

    Google Scholar 

  136. Coumoul, X., Li, W., Wang, R.H., and Deng, C. (2004) Inducible suppression of Fgfr2 and Survivin in ES cells using a combination of the RNA interference (RNAi) and the Cre-LoxP system. Nucleic Acids Res. 32, e85.

    Google Scholar 

  137. Crnkovic-Mertens, I., Muley, T., Meister, M., . et al. (2006) The anti-apoptotic livin gene is an important determinant for the apoptotic resistance of non-small cell lung cancer cells. Lung Cancer 54, 135–142.

    Article  PubMed  Google Scholar 

  138. Crnkovic-Mertens, I., Semzow, J., Hoppe-Seyler, F., and Butz, K. (2006) Isoform-specific silencing of the Livin gene by RNA interference defines Livin beta as key mediator of apoptosis inhibition in HeLa cells. J. Mol. Med. 84, 232–240.

    Article  PubMed  CAS  Google Scholar 

  139. Ren, J., Shi, M., Liu, R., . et al. (2005) The Birc6 (Bruce) gene regulates p53 and the mitochondrial pathway of apoptosis and is essential for mouse embryonic development. Proc. Natl. Acad. Sci. USA 102, 565–570.

    Article  PubMed  CAS  Google Scholar 

  140. Qiu, X.B., Markant, S.L., Yuan, J., and Goldberg, A.L. (2004) Nrdp1-mediated degradation of the gigantic IAP, BRUCE, is a novel pathway for triggering apoptosis. EMBO J. 23, 800–810.

    Article  PubMed  CAS  Google Scholar 

  141. Fischer, U. and Schulze-Osthoff, K. (2005) New approaches and therapeutics targeting apoptosis in disease. Pharmacol. Rev. 57, 187–215.

    Article  PubMed  CAS  Google Scholar 

  142. Chang, H. and Schimmer, A.D. (2007) Livin/melanoma inhibitor of apoptosis protein as a potential therapeutic target for the treatment of malignancy. Mol. Cancer Ther. 6, 24–30.

    Article  PubMed  CAS  Google Scholar 

  143. Boukamp, P. and Mirancea, N. (2007) Telomeres rather than telomerase a key target for anti cancer therapy. Exp. Dermatol. 16, 71–79.

    Article  PubMed  CAS  Google Scholar 

  144. Kelland, L.R. (2005) Overcoming the immortality of tumour cells by telomere and telomerase based cancer therapeutics – current status and future prospcts. Eur. J. Cancer. 41, 971–979.

    Article  PubMed  CAS  Google Scholar 

  145. Bremer, E., van Dam, G., Kroesen, B.J., . et al. (2006) Targeted induction of apoptosis for cancer therapy: current progress and prospects. Trends Mol. Med. 12, 382–393.

    Article  PubMed  CAS  Google Scholar 

  146. Birmingham, A., Anderson, E., Sullivan, K., . et al. (2007) A protocol for designing siRNAs with high functionality and specificity. Nat. Protoc. 2, 2068–2078.

    Article  PubMed  CAS  Google Scholar 

  147. Schubert, S., Grünweller, A., Erdmann, V.A., and Kurreck, J. (2005) Local RNA target structure influences siRNA efficacy: Systematic analysis of intentionally designed binding regions. J. Mol. Biol. 348, 883–893.

    Article  PubMed  CAS  Google Scholar 

  148. Cejka, D., Losert, D., and Wacheck, V. (2006) Short interfering RNA (siRNA): Tool or therapeutic. Clin. Sci. 110, 47–58.

    Article  PubMed  CAS  Google Scholar 

  149. Joshua-Tor, L. (2006) The Argonautes. Cold Spring Harb. Symp. Quant. Biol. 71, 67–72.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Folini, M., Pennati, M., Zaffaroni, N. (2009). RNA Interference-Mediated Validation of Genes Involved in Telomere Maintenance and Evasion of Apoptosis as Cancer Therapeutic Targets. In: Sioud, M. (eds) siRNA and miRNA Gene Silencing. Methods in Molecular Biology, vol 487. Humana Press. https://doi.org/10.1007/978-1-60327-547-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-547-7_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-546-0

  • Online ISBN: 978-1-60327-547-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics