Advertisement

Reactive Oxygen Species and Upregulation of NADPH Oxidases in Mechanotransduction of Embryonic Stem Cells

  • Heinrich Sauer
  • Carola Ruhe
  • Jörg P. Müller
  • Maike Schmelter
  • Rochelle D’Souza
  • Maria Wartenberg
Part of the Methods In Molecular Biology book series (MIMB, volume 477)

Abstract

Deciphering the differentiation pathway of embryonic stem (ES) cells is a challenging task not only for basic research, but also for clinicians who intend to use ES cells for cell transplantation approaches. We have shown that reactive oxygen species (ROS) play a primordial role in the differentiation of mouse ES cells toward the cardiovascular cell lineage. During differentiation, ES cells robustly generate ROS, which interfere with signaling pathways that direct cardiac and vascular commitment. Differentiating ES cells expression of Nox-1, Nox-2, and Nox-4 has been demonstrated. We have shown that mechanical strain application to embyoid bodies grown from ES cells initiates the cardiovascular differentiation program. Under these conditions, a burst of ROS generation occurs which is followed by induction of Nox-1 and Nox-4 and a feed-forward upregulation of ROS production.

Key words

Reactive oxygen species NADPH oxidase Embryonic stem cells Mechanical strain 

References

  1. 1.
    Dowell J. D., Rubart M., Pasumarthi K. B., Soonpaa M. H., and Field L. J. (2003) Myocyte and myogenic stem cell transplantation in the heart. Cardiovasc. Res. 58, 336–350.CrossRefPubMedGoogle Scholar
  2. 2.
    Hassink R. J., Dowell J. D., Brutel D. L. R., Doevendans P. A., and Field L. J. (2003) Stem cell therapy for ischemic heart disease. Trends Mol. Med. 9, 436–441.CrossRefPubMedGoogle Scholar
  3. 3.
    Nir S. G., David R., Zaruba M., Franz W. M., and Itskovitz-Eldor J. (2003) Human embryonic stem cells for cardiovascular repair. Cardiovasc. Res. 58, 313–323.CrossRefPubMedGoogle Scholar
  4. 4.
    Klug M. G., Soonpaa M. H., Koh G. Y., and Field L. J. (1996) Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts. J. Clin. Invest. 98, 216–224.CrossRefPubMedGoogle Scholar
  5. 5.
    Behfar A., Zingman L. V., Hodgson D. M., Rauzier J. M., Kane G. C., Terzic A. et al. (2002) Stem cell differentiation requires a paracrine pathway in the heart. FASEB J. 16, 1558–1566.CrossRefPubMedGoogle Scholar
  6. 6.
    Sachinidis A., Fleischmann B. K., Kolossov E., Wartenberg M., Sauer H., and Hescheler J. (2003) Cardiac specific differentiation of mouse embryonic stem cells. Cardiovasc. Res. 58, 278–291.CrossRefPubMedGoogle Scholar
  7. 7.
    Hescheler J., Fleischmann B. K., Wartenberg M., Bloch W., Kolossov E., Ji G. et al. (1999) Establishment of ionic channels and signalling cascades in the embryonic stem cell-derived primitive endoderm and cardiovascular system. Cells Tissues Organs 165, 153–164.CrossRefPubMedGoogle Scholar
  8. 8.
    Hescheler J., Wartenberg M., Fleischmann B. K., Banach K., Acker H., and Sauer H. (2002) Embryonic stem cells as a model for the physiological analysis of the cardiovascular system. Methods Mol. Biol. 185, 169–187.PubMedGoogle Scholar
  9. 9.
    Boheler K. R., Czyz J., Tweedie D., Yang H. T., Anisimov S. V., and Wobus A. M. (2002) Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ. Res. 91, 189–201.CrossRefPubMedGoogle Scholar
  10. 10.
    Wobus A. M., Guan K., Yang H. T., and Boheler K. R. (2002) Embryonic stem cells as a model to study cardiac, skeletal muscle, and vascular smooth muscle cell differentiation. Methods Mol. Biol. 185, 127–156.PubMedGoogle Scholar
  11. 11.
    Wobus A. M., Rohwedel J., Maltsev V., and Hescheler J. (1995) Development of cardiomyocytes expressing cardiac-specific genes, action potentials, and ionic channels during embryonic stem cell-derived cardiogenesis. Ann. N. Y. Acad. Sci. 752, 460–469.CrossRefPubMedGoogle Scholar
  12. 12.
    Kehat I., and Gepstein L. (2003) Human embryonic stem cells for myocardial regeneration. Heart Fail. Rev. 8, 229–236.CrossRefPubMedGoogle Scholar
  13. 13.
    Ali M. H., and Schumacker P. T. (2002) Endothelial responses to mechanical stress: where is the mechanosensor? Crit. Care Med. 30, S198–S206.CrossRefPubMedGoogle Scholar
  14. 14.
    Griendling K. K. (2004) Novel NAD(P)H oxidases in the cardiovascular system. Heart 90, 491–493.CrossRefPubMedGoogle Scholar
  15. 15.
    Sorescu D., and Griendling K. K. (2002) Reactive oxygen species, mitochondria, and NAD(P)H oxidases in the development and progression of heart failure. Congest. Heart Fail. 8, 132–140.CrossRefPubMedGoogle Scholar
  16. 16.
    Orient A., Donko A., Szabo A., Leto T. L., and Geiszt M. (2007) Novel sources of reactive oxygen species in the human body. Nephrol. Dial. Transplant. 22, 1281–1288.CrossRefPubMedGoogle Scholar
  17. 17.
    Geiszt M. (2006) NADPH oxidases: new kids on the block. Cardiovasc. Res. 71, 289–299.CrossRefPubMedGoogle Scholar
  18. 18.
    Schmelter M., Ateghang B., Helmig S., Wartenberg M., and Sauer H. (2006) Embryonic stem cells utilize reactive oxygen species as transducers of mechanical strain-induced cardiovascular differentiation. FASEB J. 20, 1182–1184.CrossRefPubMedGoogle Scholar
  19. 19.
    Sauer H., Rahimi G., Hescheler J., and Wartenberg M. (2000) Role of reactive oxygen species and phosphatidylinositol 3-kinase in cardiomyocyte differentiation of embryonic stem cells. FEBS Lett. 476, 218–223.CrossRefPubMedGoogle Scholar
  20. 20.
    Buggisch M., Ateghang B., Ruhe C., Strobel C., Lange S., Wartenberg M. et al. (2007) Stimulation of ES-cell-derived cardiomyogenesis and neonatal cardiac cell proliferation by reactive oxygen species and NADPH oxidase. J. Cell Sci. 120, 885–894.CrossRefPubMedGoogle Scholar
  21. 21.
    Sauer H., Bekhite M. M., Hescheler J., and Wartenberg M. (2005) Redox control of angiogenic factors and CD31-positive vessel-like structures in mouse embryonic stem cells after direct current electrical field stimulation. Exp. Cell Res. 304, 380–390.CrossRefPubMedGoogle Scholar
  22. 22.
    Sauer H., Rahimi G., Hescheler J., and Wartenberg M. (1999) Effects of electrical fields on cardiomyocyte differentiation of embryonic stem cells. J. Cell Biochem. 75, 710–723.CrossRefPubMedGoogle Scholar
  23. 23.
    Li J., Stouffs M., Serrander L., Banfi B., Bettiol E., Charnay Y. et al. (2006) The NADPH oxidase NOX4 drives cardiac differentiation: Role in regulating cardiac transcription factors and MAP kinase activation. Mol. Biol. Cell 17, 3978–3988.CrossRefPubMedGoogle Scholar
  24. 24.
    Wobus A. M., Holzhausen H., Jakel P., and Schoneich J. (1984) Characterization of a pluripotent stem cell line derived from a mouse embryo. Exp. Cell Res. 152, 212–219.CrossRefPubMedGoogle Scholar
  25. 25.
    Rohwedel J., Maltsev V., Bober E., Arnold H. H., Hescheler J., and Wobus A. M. (1994) Muscle cell differentiation of embryonic stem cells reflects myogenesis in vivo: developmentally regulated expression of myogenic determination genes and functional expression of ionic currents. Dev. Biol. 164, 87–101.CrossRefPubMedGoogle Scholar
  26. 26.
    Drab M., Haller H., Bychkov R., Erdmann B., Lindschau C., Haase H. et al. (1997) From totipotent embryonic stem cells to spontaneously contracting smooth muscle cells: a retinoic acid and db-cAMP in vitro differentiation model. FASEB J. 11, 905–915.PubMedGoogle Scholar
  27. 27.
    Strubing C., Ahnert-Hilger G., Shan J., Wiedenmann B., Hescheler J., and Wobus A. M. (1995) Differentiation of pluripotent embryonic stem cells into the neuronal lineage in vitro gives rise to mature inhibitory and excitatory neurons. Mech. Dev. 53, 275–287.CrossRefPubMedGoogle Scholar
  28. 28.
    Wartenberg M., Gunther J., Hescheler J., and Sauer H. (1998) The embryoid body as a novel in vitro assay system for antiangiogenic agents. Lab. Invest. 78, 1301–1314.PubMedGoogle Scholar
  29. 29.
    Mello C. C., and Conte D., Jr. (2004) Revealing the world of RNA interference. Nature 431, 338–342.CrossRefPubMedGoogle Scholar
  30. 30.
    Dykxhoorn D. M., Novina C. D., and Sharp P. A. (2003) Killing the messenger: short RNAs that silence gene expression. Nat. Rev. Mol. Cell Biol. 4, 457–467.CrossRefPubMedGoogle Scholar
  31. 31.
    Hunter T., Hunt T., Jackson R. J., and Robertson H. D. (1975) The characteristics of inhibition of protein synthesis by double-stranded ribonucleic acid in reticulocyte lysates. J. Biol. Chem. 250, 409–417.PubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Heinrich Sauer
    • 1
  • Carola Ruhe
    • 2
  • Jörg P. Müller
    • 3
  • Maike Schmelter
    • 1
  • Rochelle D’Souza
    • 1
  • Maria Wartenberg
    • 2
  1. 1.Department of PhysiologyJustus Liebig UniversityGermany
  2. 2.Department of Internal Medicine, Cardiology DivisionFriedrich Schiller UniversityGermany
  3. 3.Institute of Molecular Biology, Medical Faculty, Friedrich Schiller UniversityGermany

Personalised recommendations