A Functional Genomics Approach to Identify and Characterize Oxidation Resistance Genes

  • Michael R. Volkert
  • Jen-Yeu Wang
  • Nathan A. Elliott
Part of the Methods In Molecular Biology book series (MIMB, volume 477)


In order to develop a more complete understanding of the genes required for resistance to oxidative DNA damage, we devised methods to identify genes that can prevent or repair oxidative DNA damage. These methods use the oxidative mutator phenotype of a repair deficient E. coli strain to measure the antimutator effect resulting from the expression of human cDNAs. The method can be adapted to characterize the function, and to determine the active site domains, of putative antimutator genes. Since bacteria do not contain subcellular compartments, genes that function in mitochondria, the cytoplasm, or the nucleus can be identified. Methods to determine the localization of genes in their normal host organism are also described.

Key words

Oxidative DNA damage DNA repair Mutagenesis Mitochondrial localization Fluorescence microscopy Functional gene cloning 8-oxoguanine 


  1. 1.
    Wyrzykowski, J., Volkert, M. R. (2003) The Escherichia coli methyl-directed mismatch repair system repairs base pairs containing oxidative lesions. J. Bacteriol. 185, 1701–1704.CrossRefPubMedGoogle Scholar
  2. 2.
    Tchou, J., Kasai, H., Shibutani, S., Chung, M., Laval, J., Grollman, A. P., et al. (1991) 8-oxoguanine (8-hydroxyguanine) DNA glyxosylase and its substrate specificity. Proc. Natl. Acad. Sci. USA 88, 4690–4694.CrossRefPubMedGoogle Scholar
  3. 3.
    Au, K. G., Cabrera, M., Miller, J. H., Modrich, P. (1988) Escherichia coli mutY gene product is required for specific AG → CG mismatch correction. Proc. Natl. Acad. Sci. USA 85, 9163–9166.CrossRefPubMedGoogle Scholar
  4. 4.
    Cupples, C. G., Miller, J. H. (1989) A set of lacZ mutations in Escherichia coli that allow rapid detection of each of the six base substitutions. Proc. Natl. Acad. Sci. USA 86, 5345–5349.CrossRefPubMedGoogle Scholar
  5. 5.
    Volkert, M. R., Elliott, N. A., Housman, D. E. (2000) Functional genomics reveals a family of eukaryotic oxidation protection genes. Proc. Natl. Acad. Sci. USA 97, 14530–14535.CrossRefPubMedGoogle Scholar
  6. 6.
    Elliott, N. A., Volkert, M. R. (2004) Stress induction and mitochondrial localization of Oxr1 proteins in yeast and humans. Molec. Cell Biol. 24, 3180–3187.CrossRefPubMedGoogle Scholar
  7. 7.
    Nghiem, Y., Cabrera, M., Cupples, C. G., Miller, J. H. (1988) The mutY gene: A mutator locus in Escherichia coli that generates GC → TA transversions. Proc. Natl. Acad. Sci. USA 85, 2709–2713.CrossRefPubMedGoogle Scholar
  8. 8.
    Fischer, H., Zhang, X. U., O’Brien, K. P., Kylsten, P., Engvall, E. (2001) C7, a novel nucleolar protein, is the mouse homologue of the Drosophila late puff product L82 and an isoform of human oxr1. Biochem. Biophys. Res. Commun. 281, 795–803.CrossRefPubMedGoogle Scholar
  9. 9.
    Shao, W., Halachmi, S., Brown, M. (2002) Erap140, a conserved tissue-specific nuclear receptor coactivator. Mol. Cell Biol. 22, 3358–3372.CrossRefPubMedGoogle Scholar
  10. 10.
    Durand, M., Kolpak, A., Farrell, T., Elliott, N. A., Shao, W., Brown, M., et al. (2007) The Oxr domain defines a conserved family of eukaryotic oxidation resistance proteins. BMC Cell Biol. 8, 13.CrossRefPubMedGoogle Scholar
  11. 11.
    Wang, J.-Y., Sarker, A. H., Cooper, P. K., Volkert, M. R. (2004) The single-strand DNA binding activity of human PC4 functions to prevent mutagenesis and killing by oxidative DNA damage. Mol. Cell Biol. 24, 6084–6093.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Michael R. Volkert
    • 1
  • Jen-Yeu Wang
    • 2
  • Nathan A. Elliott
    • 3
  1. 1.Department of Molecular Genetics and MicrobiologyUniversity of Massachusetts Medical SchoolWorcesterUSA
  2. 2.Institute of Molecular Biology, Academica SinicaTaipei
  3. 3.NanoString TechnologiesSeattleUSA

Personalised recommendations