Experimental Embryological Methods for Analysis of Neural Induction in the Amphibian

  • Ray Keller
  • Ann Poznanski
  • Tamira Elul
Part of the METHODS IN MOLECULAR BIOLOGY™ book series (MIMB, volume 461)

1. Introduction

Our objective is to describe and critique some of the experimental embryolog-ical preparations used to analyze tissue interactions involved in neural induction in amphibians. The molecular basis of neural induction and the tissue interactions that carry the inductive signals are areas of active research, stimulated by the recent identification of several potential neural inducers (1, 2, 3, 4, 5, 6), availability of regional molecular markers easily visualized with a good whole-mount RNA in situ hybridization method (7), and the work on Hox genes that may have a role in specifying regional differentiation of the vertebrate nervous system (8). These advances demand more of and make more useful the classical embryo-logical manipulations used to characterize the tissue interactions involved in neural induction.

We will first describe the location and movements of the inducing and induced tissues, since misunderstanding of these aspects remains the major source of confusion...


Neural Plate Neural Induction Deep Cell Convergent Extension Planar Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by NIH HD25594 and NSF92-20525 to Ray Keller. Tamira Elul is supported by a Howard Hughes Medical Institute Predoctoral Fellowship. We thank the other members of the laboratory, both past and present, for their direct and indirect contributions to the development of the methods described in this chapter.


  1. 1.
    Hemmati-Brivanlou, A. and Melton, D. A. (1992) A truncated activin receptor inhibits mesoderm induction and formation of axial structures inXenopusembryos.Nature 359, 609–614.CrossRefPubMedGoogle Scholar
  2. 2.
    Hemmati-Brivanlou, A. and Melton, D. A. (1994) Inhibition of activin receptor signaling promotes neuralization inXenopus.Cell 77, 273–281.CrossRefGoogle Scholar
  3. 3.
    Hemmati-Brivanlou, A., Kelly, O. G., and Melton, D. A. (1994) Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity.Cell 77, 283–295.CrossRefPubMedGoogle Scholar
  4. 4.
    Smith, W. and Harland, R. (1992) Expression cloning of noggin, a new dorsal-izing factor localized to the Spemann Organizer inXenopus embryos.Cell 70, 829–840.CrossRefPubMedGoogle Scholar
  5. 5.
    Lamb, T. M., Knecht, A. K., Smith, W. C., Stachel, S., Economides, A. N., Stahl, N., Yancoplous, G. D., and Harland, R. M. (1993) Neural induction by the secreted polypeptide noggin.Science 266, 650–653.Google Scholar
  6. 6.
    Harland, R. (1994) Neural induction inXenopus.Curr. Opin. Gen. Devel. 4, 543–549.CrossRefGoogle Scholar
  7. 7.
    Harland, R. M. (1991) In situ hybridization: An improved whole-mount method forXenopusembryos, inMethods in Cell Biology, vol. 36 (Kay, B. and Peng, B., eds.), Academic, San Diego, pp. 685–695.Google Scholar
  8. 8.
    Krumlauf, R. (1995) Hox genes in vertebrate development.Cell 78, 191–201.CrossRefGoogle Scholar
  9. 9.
    Keller, R. E. (1991). Early embryonic development ofXenopus laevis, inXenopus laevis: Practical uses in Cell and Molecular Biology, vol. 36 (Kay, B. and Peng, H. B. eds.), Academic, San Diego, pp. 59–111.Google Scholar
  10. 10.
    Keller, R. E., Shih, J., and Sater, A. K. (1992) The cellular basis of the convergence and extension of theXenopusneural plate.Dev. Dyn. 193, 199–217.PubMedGoogle Scholar
  11. 11.
    Keller, R. and Danilchik, M. (1988) Regional expression, pattern and timing of convergence and extension during gastrulation ofXenopus laevis.Development 103, 193–209.PubMedGoogle Scholar
  12. 12.
    Gerhart, J., Doniach, T., and Stewart, R. (1991) Organizing the Xenopus organizer, inGastrulation(Keller, R., Clark, W., and Griffin, F., eds.), Plenum, New York, pp. 57–77.Google Scholar
  13. 13.
    Spemann, H. and H. Mangold (1924) Über Induktion von Embryonalanlagen durch Implantation artfremder Organisatoren.Arch. Mikr. Anat. Entw. Mech.100, 599–638.Google Scholar
  14. 14.
    Gimlich, R. and Cooke, J. (1993) Cell lineage and induction of second nervous systems in amphibian development.Nature 306, 471–473.CrossRefGoogle Scholar
  15. 15.
    Keller, R. E. (1981) An experimental analysis of the role of bottle cells and the deep marginal zone in gastrulation ofXenopus laevis. J. Exp. Zool. 216, 81–101.CrossRefPubMedGoogle Scholar
  16. 16.
    Hardin, J. and Keller, R. (1988) The behaviour and function of bottle cells during gastrulation of Xenopus laevis. Development 103, 211–230.PubMedGoogle Scholar
  17. 17.
    Nieuwkoop, P. D. and Faber, J. (1967)Normal Table ofXenopus laevis (Daudin). North-Holland Publishing, Amsterdam.Google Scholar
  18. 18.
    Keller, R. E. (1978) Time-lapse cinemicrographic analysis of superficial cell behavior during and prior to gastrulation inXenopus laevis.J. Morph. 157, 223–248.CrossRefGoogle Scholar
  19. 19.
    Keller, R. E. (1980) The cellular basis of epiboly: An SEM study of deep-cell rearrangement during gastrulation inXenopus laevis.J. Embryol. Exp. Morph. 60, 201–234.PubMedGoogle Scholar
  20. 20.
    Nieuwkoop P. and Florshutz, P. (1950) Quelques caractères spéciaux de la gastrula-tion et de la neurulation de l'oeuf deXenopus laevis, Daud. et de quelques autres Anoures. 1èrepartie. — Étude descriptive.Arch. Biol.(Liège)61, 113–150.Google Scholar
  21. 21.
    Keller, R. E. (1975) Vital dye mapping of the gastrula and neurula ofXenopus laevis. I. Prospective areas and morphogenetic movements of the superficial layer.Develop. Biol. 42, 222–241.CrossRefPubMedGoogle Scholar
  22. 22.
    Keller, R. E (1976) Vital dye mapping of the gastrula and neurula ofXenopus lae-vis. II. Prospective areas and morphogenetic movements of the deep layer.Develop. Biol. 51, 118–137.CrossRefPubMedGoogle Scholar
  23. 23.
    Nakatsuji, N. (1975) Studies on the gastrulation of amphibian embyros: cell movement during gastrulation inXenopus laevisembryos.Wilhelm Roux' Arch.178, 1–14.CrossRefGoogle Scholar
  24. 24.
    Cho, K. W. Y., Blumberg, B., Steinbeisser, H., and De Robertis, E. M. (1991) Molecular nature of Spemann's Organizer: the role of theXenopushomeobox gene goosecoid.Cell 67, 1111–1120.CrossRefPubMedGoogle Scholar
  25. 25.
    Blitz, I. and Cho, K. (1995) Anterior neuroectoderm is progressively induced during gastrulation: the role of theXenopushomeobox gene orthodenticle.Development 121, 993–1004.PubMedGoogle Scholar
  26. 25.
    Bouwmeester, T., Sung-Hyun, K., Sasai, Y., Lu, B., and DeRobertis, E. (1996) Cerberus is a head-inducing secretal factor expressed in the anterior endoderm of Spiemann's Organizer.Nature 382, 595–601.CrossRefPubMedGoogle Scholar
  27. 26.
    Vodicka, M. and Gerhart, J. (1995) Blastomere contributions and domains of gene expression in the Spemann Organizer ofXenopus laevis.Development 121, 3505– 3518.PubMedGoogle Scholar
  28. 27.
    Bauer, D. V., Huang, S., and Moody, S. (1994) The cleavage stage origins of Spemann's Organizer: analysis of the movements of blastomere clones before and during gastrulation inXenopus.Development 120, 1179–1189.PubMedGoogle Scholar
  29. 28.
    Keller, R., Shih, J., and Wilson, P. (1991) Cell motility, control and function of convergence and extension during gastrulation ofXenopus, inGastrulation: Movements, Patterns, and Molecules(Keller, R, Clark, W., and Griffin, F. eds.), Plenum Press, New York, pp. 101–119.Google Scholar
  30. 29.
    Keller, R., Shih, J., Wilson, P., and Sater, A. (1991) Pattern and function of cell motility and cell interactions during convergence and extension inXenopus, inCell-Cell Interactions in Early Development, 49th Symp.Soc. Develop. Biol.(Gerhart, J. C., ed.), Wiley-Liss, New York, pp. 31–62.Google Scholar
  31. 30.
    Spemann, H. (1938)Embryonic Development and Induction. Yale University Press, New HavenGoogle Scholar
  32. 31.
    Nieuwkoop P. D., Boterenbrod, E. C., Kremer, A., Bloemsma, F., Hosessels, E., and Verheyen, F. (1952) Activation and organization of the central nervous system in Amphibians.J. Exp. Zool.120, 1–108.CrossRefGoogle Scholar
  33. 32.
    van Stratten, H. M. V., and Hekking, J. W. M., Wiertz-hoessels, E. J. L. M., Thors, F., and Drukker, J. (1988) Effect of the notochord on the differentiation of the floor-plate area in the neural tube of the chick embryo.Anat. Embryol.177, 317–324.CrossRefGoogle Scholar
  34. 33.
    Smith, J. L. and Schoenwolf, G. C. (1989) Notochordal induction of cell wedging in the chick neural plate and its role in neural tube formation.J. Exp. Zool.250, 49–62.CrossRefPubMedGoogle Scholar
  35. 34.
    Sive, H., Hattori, K., and Weintraub, H. (1989) Progressive determination during formation of the anteroposterior axis inXenopus laevis.Cell 58, 171–180.CrossRefPubMedGoogle Scholar
  36. 35.
    Placzek, M., Tessier-Lavigne, M., Yamada, T., Jessell, T., and Dodd, J. (1990) Mesodermal control of neural cell identity: floor plate induction by the notochord.Science 250, 985–988.CrossRefPubMedGoogle Scholar
  37. 36.
    Yamada, T., Placzek, M., Tanaka, H., Dodd, J., and Jessell, T. M. (1991) Control of cell pattern in the developing nervous system: Polarizing activity of the floor plate and notochord.Cell 64, 635–647.CrossRefPubMedGoogle Scholar
  38. 37.
    Saha, M. and Grainger, R. (1992) A liabile period in the determination of the anterior-posterior axis during early neural development inXenopus. Neuron 8, 1003–1014.CrossRefPubMedGoogle Scholar
  39. 38.
    Keller, R. and R. Winklbauer (1992) The cellular basis of amphibian gastrulation, inCurrent Topics in Developmental Biology, vol. 27 (Pedersen, R., ed.), Academic, New York, pp. 39–89.Google Scholar
  40. 39.
    Shih, J. and Keller, R. E. (1992) Cell motility driving mediolateral intercalation in explants ofXenopus laevis. Development 116, 901–914.PubMedGoogle Scholar
  41. 40.
    Winklbauer, R. Mesodermal cell migration duringXenopusgastrulation.Dev. Biol. 142, 155–168.Google Scholar
  42. 41.
    Winklbauer, R., Selchow, A., Nagel, M., Stoltz, C., and Angres, B. (1991) Meso-derm cell migration in theXenopusgastrula, inGastrulation: Movements, Patterns, and Molecules(Keller, R., Clark, W., and Griffin, F., eds.), Plenum, New York, pp. 147–168.Google Scholar
  43. 42.
    Smith, J. C., Price, B. M. J., Green, J. B. A., Weigel, D., and Herrmannn, B. (1991) Expression of theXenopushomolog of Brachyury (T) is an immediateearly response to mesoderm induction.Cell 67, 79–87.CrossRefPubMedGoogle Scholar
  44. 43.
    Kushner, P. D. (1984) A library of monoclonal antibodies toTorpedocholinergic synaptosomes.J. Neurochem.43, 775–786.CrossRefPubMedGoogle Scholar
  45. 44.
    Bolce, M. E., Hemmati-Brivanlou, A., Kushner, P. D., and Harland, R. M. (1992) Ventral ectoderm ofXenopusforms neural tissue, including hindbrain, in response to activin.Development 115, 673–680.Google Scholar
  46. 45.
    Kintner, C. R. and Brockes, J. (1984) Monoclonal antibodies identify blastemal cells derived from differentiating muscle in newt limb regeneration.Nature(London)308, 67–69.CrossRefPubMedGoogle Scholar
  47. 46.
    Shih, J. and Keller, R. E. (1992) Patterns of cell motility in the organizer and dorsal mesoderm ofXenopus laevis.Development 116, 915–930.PubMedGoogle Scholar
  48. 47.
    Domingo, C. and Keller, R. (1995) Induction of notochord cell intercalation behavior and differentiation by progressive signals in the gastrula ofXenopus laevis.Development 121, 3311–3321.PubMedGoogle Scholar
  49. 48.
    Akers, R., Phillips, C., and Wessels, N. (1986) Expression of an epidermal antigen used to study tissue induction in the earlyXenopusembryo.Science 231, 613–616.CrossRefPubMedGoogle Scholar
  50. 49.
    London, C., Akers, R., and Phillips, C. (1988) Expression of Ep-1, an epidermis-specific marker in Xenopus laevis embryos, is specified prior to gastrulation.Devel. Biol. 129, 380–389.CrossRefGoogle Scholar
  51. 50.
    Savage, R. and Phillips, C. (1989) Signals from the dorsal blastopore region during gastrulation bias the ectoderm toward a nonepidermal pathway of differentiation inXenopus laevis.Dev. Biol. 132, 157–168.CrossRefGoogle Scholar
  52. 51.
    Sokol, S. and Melton, D. (1991) Pre-existent pattern inXenopusanimal pole cells revealed by induction with activin.Nature 351, 409–411.CrossRefPubMedGoogle Scholar
  53. 52.
    Keller, R. E., Shih, J., Sater, A. K. and Moreno, C. (1992) Planar induction of convergence and extension of the neural plate by the organizer ofXenopus. Dev. Dynam. 193, 218–234.Google Scholar
  54. 53.
    Doniach, T., Phillips, C. R., and Gerhart, J. C. (1992) Planar induction of antero-posterior pattern in the developing central nervous system ofXenopus laevis.Science 257, 542–545.CrossRefPubMedGoogle Scholar
  55. 54.
    Otte, P. and Moon, R. (1992) Protein kinase C isozymes have distinct roles in neural induction and competence inXenopus.Cell 68, 1021–1029.CrossRefPubMedGoogle Scholar
  56. 55.
    Wilson, P. A. and Hemmati-Brivalou, A. (1995) Induction of epidermis and inhibition of neural fate by BMP-4.Nature 376, 331–334.CrossRefPubMedGoogle Scholar
  57. 56.
    Harland, R. (1995) The transforming growth factor b family and induction of the vertebrate mesoderm: bone morphogenetic proteins are ventral inducers.Proc. Natl. Acad. Sci. USA 91, 10,243–10,246.Google Scholar
  58. 57.
    Moury, D. and Jacobson, A. (1989) Neural fold formation at newly created boundaries between neural plate and epidermis in the axolotl.Dev. Biol. 133, 44–57.CrossRefPubMedGoogle Scholar
  59. 58.
    Moury, D. and Jacobson, A. (1990) The origins of the neural crest cells in the axolotl.Devel. Biol. 141, 243–253.CrossRefGoogle Scholar
  60. 59.
    Jacobson, A. and Moury, J. D. (1995) Tissue boundaries and cell behavior during neurulation.Dev. Biol. 171, 98–110.CrossRefPubMedGoogle Scholar
  61. 60.
    Liem, K., Jr., Tremmi, G., Roelink, H., and Jessell, T. (1995) Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm.Cell 82, 969–979.CrossRefPubMedGoogle Scholar
  62. 61.
    Selleck, M. and Bronner-Fraser, M. (1995) Origins of the avian neural crest: the role of neural plate-epidermal interactions.Development 121, 525–538.PubMedGoogle Scholar
  63. 62.
    Scharf, S. and Gerhart, J. (1983) Axis determination in eggs ofXenopus laevis: a critical period before first cleavage, identified by the common effects of cold, pressure, and ultraviolet irradiation.Devel. Biol. 99, 75–87.CrossRefGoogle Scholar
  64. 63.
    Kay, B. K. and Peng, H. B. (1991) Xenopus laevis:Practical Uses in Cell and Molecular Biology, vol. 36, Academic, San Diego.Google Scholar
  65. 64.
    Gurdon, J. (1977) Methods for nuclear transplantation in amphibia.Meth. Cell Biol. 16, 125–139.CrossRefGoogle Scholar
  66. 65.
    Sater, A. K., Steinhardt R. A., and Keller R. (1993) Induction of neuronal differentiation by planar signals inXenopusembryos.Devel. Dynam.197, 268–280.Google Scholar
  67. 66.
    Keller, R. E., Danilchik, M., Gimlich, R., and Shih, J. (1985) Convergent extension by cell intercalation during gastrulation ofXenopus laevis, inMolecular Determinants of Animal Form, UCLA Symposia on Molecular and Cellular Biology, New Series 31 (Edelman, G. M., ed.), Liss, New York, pp. 111–141.Google Scholar
  68. 67.
    Keller, R. E., Danilchik, M., Gimlich, R., and Shih, J. (1985) The function and mechanism of convergent extension during gastrulation ofXenopus laevis.J. Embryol. Exp. Morphol.89(Suppl.), 185–209.PubMedGoogle Scholar
  69. 68.
    Gillespie, R. (1983) The distribution of small ions during the early development ofXenopus laevisandAmbystoma mexicanumembryos.J. Physiol.344, 359–377.PubMedGoogle Scholar
  70. 69.
    Shih, J. and Keller, R. (1992) The epithelium of the dorsal marginal zone ofXeno-pushas organizer properties.Development 116, 887–899.PubMedGoogle Scholar
  71. 70.
    Wilson, P. A. and Keller, R. E. (1991) Cell rearrangement during gastrulation ofXenopus: direct observation of cultured explants.Development 112, 289–305.PubMedGoogle Scholar
  72. 71.
    Holtfreter, J. (1943) Properties and function of the surface coat in amphibian embryos.J. Exp. Zool.93, 251–323.CrossRefGoogle Scholar
  73. 72.
    Holtfreter, J. (1943) A study of the mechanics of gastrulation. Part I.J. Exp. Zool. 94, 261–318.CrossRefGoogle Scholar
  74. 73.
    Holtfreter, J. (1944) A study of the mechanics of gastrulation. Part II.J. Exp. Zool. 95, 171–212.CrossRefGoogle Scholar
  75. 74.
    Kirschner, M. and Hara, K. (1980) A new method of local vital staining of amphibian embryos using ficoll and “crystals” of Nile Red.Mikroskopie 36, 12–15.PubMedGoogle Scholar
  76. 75.
    Gerhart, J., Ubbels, G., Black, S., Hara, K., and Kirschner, M. (1981) A reinvesti-gation of the role of the grey crescent in axis formation inXenopus laevis. Nature 292, 511–516.CrossRefPubMedGoogle Scholar
  77. 76.
    Kintner, C. R. and Melton, D. A. (1987) Expression of Xenopus N-CAM RNA in ectoderm is an early response to neural induction.Development 99, 311–325.PubMedGoogle Scholar
  78. 77.
    Dixon, J. and Kintner, C. R. (1989) Cellular contacts required for neural induction inXenopusembryos: evidence for two signals.Development 106, 749–757.PubMedGoogle Scholar
  79. 78.
    Papalopulu, N. and Kintner, C. (1993) Xenopus Distal-less related homeobox genes are expressed in the developing forebrain and are induced by planar signals.Development 117, 961–975.PubMedGoogle Scholar
  80. 79.
    Holtfreter, J. (1933) Die totale Exogastrulation, eine Selbstablosung des Ektoderms vom Entomesoderm.Roux' Arch. Entw. Mech. 129, 669–793.CrossRefGoogle Scholar
  81. 80.
    Poznanski, A. and Keller, R. (1997) The role of planar and early vertical signaling in patterning and expression of Hoxb-1 inXenopus. Dev. Biol. 189, 256–269.CrossRefPubMedGoogle Scholar
  82. 81.
    Ruiz i Altaba, A. (1990) Neural expression of theXenopushomeobox gene Xhox3: evidence for a patterning neural signal that spreads through the ectoderm.Development 108, 67–80.Google Scholar
  83. 82.
    Ruiz i Altaba, A. (1992) Planar and vertical signals in the induction and patterning of theXenopusnervous system.Development 115, 67–80.Google Scholar
  84. 83.
    Keller, R. E. (1986) The cellular basis of amphibian gastrulation, inDevelopmental Biology: A Comprehensive Synthesis, vol. 2 (Browder, L., ed.), Plenum, New York, pp. 241–327.Google Scholar
  85. 84.
    Lamb, T. M. (1995) Neural induction and patterning inXenopus: The role of the dorsal mesoderm and secreted molecules derived from it. Ph.D. Thesis, University of California, Berkeley, CA.Google Scholar
  86. 85.
    Vogt, W. (1929) Gestaltanalyse am Amphibienkein mit ortlicher Vitalfarbung. II. Teil. Gastrulation und Mesodermbildung bei Urodelen und Anuren.Wilhelm Roux Arch. EntwMech. Org. 120, 384–706.CrossRefGoogle Scholar
  87. 86.
    Jacobson, A. and Gordon, R. (1976) Changes in the shape of the developing vertebrate nervous system analyzed experimentally, mathematically and by computer simulation.J. Exp. Zool. 197, 191–246.CrossRefPubMedGoogle Scholar
  88. 87.
    Jacobson, A. (1981) Morphogenesis of the neural plate and tube, inMorphogenesis and Pattern Formation(Connelley, T. G., Brinkley, L., and Carlson, B, eds.), Wiley, New York, pp. 223–263.Google Scholar
  89. 88.
    Wilson, P. A., Oster, G. M., and Keller, R. (1989) Cell rearrangement and segmentation inXenopus: direct observation of cultured explants.Development 105, 155–166.PubMedGoogle Scholar
  90. 89.
    Elul, T., Koehl, M., and Keller, R. (1995) Cellular mechanism of neural convergence and extension.J. Cell Biol.H-49 (abstract).Google Scholar
  91. 90.
    Lehman, F. E. (1932) Die Beteiligung von Implantats- und Wirtsgewebe bei der Gastrulation und Neurulation inducierter Embryonalanlagen.Wilhelm Roux Arch. Entw.-Mech. Org. 125, 566–639.CrossRefGoogle Scholar
  92. 91.
    Eagleson, G. and Harris, W. (1989) Mapping the presumptive brain regions in the neural plate ofXenopus laevis. J. Neurology 21, 427–440.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Ray Keller
    • 1
  • Ann Poznanski
    • 1
  • Tamira Elul
    • 1
  1. 1.Department of BiologyUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations