Transgenic RNA Interference to Investigate Gene Function in the Mouse

  • Tilo Kunath
Part of the METHODS IN MOLECULAR BIOLOGY™ book series (MIMB, volume 461)

1. Introduction

The necessity of a gene for a particular biological function is often investigated by loss-of-function studies. Although this may be accomplished by a number of means, the most common and def initive strategy is to physically disrupt the genetic locus in a way that results in the production of a nonfunctional protein or prevents transcription, without affecting the activity of nearby genes. In the mouse, this can be performed in several ways. Chemical mutagenesis and gene trap approaches have been very useful to obtain randomly induced mutations (1,2), while homologous recombination in embryonic stem (ES) cells has been the traditional method to disrupt genes in a directed manner (3,4).

A less definitive, but often effective and rapid method to investigate the necessity of a protein-encoding gene is by posttranscriptional suppression. Several experimental strategies exist that either promote mRNA degradation or inhibit translation, including antisense, ribozyme, and...


Embryonic Stem Cell Embryonic Stem Cell Line Sense Strand Antisense Strand Embryonic Stem Cell Clone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I thank José Silva for helpful discussion and Lars Grotewold for comments on the manuscript and critical references.


  1. 1.
    Balling R (2001) ENU mutagenesis: analyzing gene function in mice. Annu Rev Genomics Hum Genet 2:463–492.CrossRefPubMedGoogle Scholar
  2. 2.
    Stanford WL, Cohn JB, Cordes SP (2001) Gene-trap mutagenesis: past, present and beyond. Nat Rev Genet 2:756–768.CrossRefPubMedGoogle Scholar
  3. 3.
    Capecchi, MR (1989) Altering the genome by homologous recombination. Science 244:1288–1292.CrossRefPubMedGoogle Scholar
  4. 4.
    Bronson SK, Smithies O (1994) Altering mice by homologous recombination using embryonic stem cells. J Biol Chem 269:27155–27158.PubMedGoogle Scholar
  5. 5.
    Rossi JJ (1992) Ribozymes. Curr Opin Biotechnol 3:3–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Denhardt DT (1992) Mechanism of action of antisense RNA. Sometime inhibition of transcription, processing, transport, or translation. Ann N Y Acad Sci 660:70–76.CrossRefPubMedGoogle Scholar
  7. 7.
    Heasman J (2002) Morpholino oligos: making sense of antisense? Dev Biol 243:209–214.CrossRefPubMedGoogle Scholar
  8. 8.
    Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone syn-thase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289.CrossRefPubMedGoogle Scholar
  9. 9.
    van der Krol AR, Mur LA, Beld M, Mol JN, Stuitje AR (1990) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2:291–299.CrossRefPubMedGoogle Scholar
  10. 10.
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC.(1998) Potent and specific genetic interference by double-stranded RNA inCaenorhabditis ele-gans. Nature 391:806–811.CrossRefPubMedGoogle Scholar
  11. 11.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297.CrossRefPubMedGoogle Scholar
  12. 12.
    Shi Y (2003) Mammalian RNAi for the masses. Trends Genet 19:9–12.CrossRefPubMedGoogle Scholar
  13. 13.
    Paddison PJ, Hannon GJ 2002. RNA interference: the new somatic cell genetics? Cancer Cell 2:17–23.CrossRefPubMedGoogle Scholar
  14. 14.
    Hannon GJ (2002) RNA interference. Nature 418:244–251.CrossRefPubMedGoogle Scholar
  15. 15.
    McManus MT, Sharp PA (2002) Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3:737–747.CrossRefPubMedGoogle Scholar
  16. 16.
    Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156.CrossRefPubMedGoogle Scholar
  17. 17.
    Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638.CrossRefPubMedGoogle Scholar
  18. 18.
    Nagy A, Gocza E, Diaz EM, Prideaux VR, Ivanyi E, Markkula M, Rossant J (1990) Embryonic stem cells alone are able to support fetal development in the mouse. Development 110:815–821.PubMedGoogle Scholar
  19. 19.
    Nag, A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci USA 90:8424–8428.CrossRefGoogle Scholar
  20. 20.
    Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366.CrossRefPubMedGoogle Scholar
  21. 21.
    Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes Dev 15:188–200.CrossRefPubMedGoogle Scholar
  22. 22.
    Nykanen A, Haley B, Zamore PD (2001) ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107:309–321.CrossRefPubMedGoogle Scholar
  23. 23.
    Boutla A, Delidakis C, Livadaras I, Tsagris M, Tabler M (2001) Short 5 -phospho-rylated double-stranded RNAs induce RNA interference inDrosophila. Curr Biol 11:1776–1780.CrossRefPubMedGoogle Scholar
  24. 24.
    Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498.CrossRefPubMedGoogle Scholar
  25. 25.
    Dodd A, Chambers SP, Love DR (2004) Short interfering RNA-mediated gene targeting in the zebrafish. FEBS Lett 561:89–93.CrossRefPubMedGoogle Scholar
  26. 26.
    Vanitharani R, Chellappan P, Fauquet CM (2003) Short interfering RNA-mediated interference of gene expression and viral DNA accumulation in cultured plant cells. Proc Natl Acad Sci USA 100:9632–9636.CrossRefPubMedGoogle Scholar
  27. 27.
    Zhou Y, Ching YP, Kok KH, Kung HF, Jin DY (2002) Post-transcriptional suppression of gene expression inXenopus embryos by small interfering RNA. Nucleic Acids Res 30:1664–1669.CrossRefPubMedGoogle Scholar
  28. 28.
    Oates AC, Bruce AE, Ho RK (2000) Too much interference: injection of double-stranded RNA has nonspecific effects in the zebrafish embryo. Dev Biol 224:20–28.CrossRefPubMedGoogle Scholar
  29. 29.
    Geiss G, Jin G, Guo J, Bumgarner R, Katze MG, Sen GC.(2001) A comprehensive view of regulation of gene expression by double-stranded RNA-mediated cell signaling. J Biol Chem 276:30178–30182.PubMedGoogle Scholar
  30. 30.
    Lee NS, Dohjima T, Bauer G, Li H, Li MJ, Ehsani A, Salvaterra P, Rossi J (2002) Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol 20:500–505.PubMedGoogle Scholar
  31. 31.
    Paul CP, Good PD, Winer I, Engelke DR (2002) Effective expression of small interfering RNA in human cells. Nat Biotechnol 20:505–508.CrossRefPubMedGoogle Scholar
  32. 32.
    Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553.CrossRefPubMedGoogle Scholar
  33. 33.
    Miyagishi M, Taira K (2002) U6 promoter-driven siRNAs with four uridine 3 overhangs efficiently suppress targeted gene expression in mammalian cells. Nat Biotechnol 20:497–500.CrossRefPubMedGoogle Scholar
  34. 34.
    Yu JY, DeRuiter SL, Turner DL (2002) RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci USA 99:6047–6052.CrossRefPubMedGoogle Scholar
  35. 35.
    Hutvagner G, Zamore PD (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297:2056–2060.CrossRefPubMedGoogle Scholar
  36. 36.
    Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110:563–574.CrossRefPubMedGoogle Scholar
  37. 37.
    Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208.CrossRefPubMedGoogle Scholar
  38. 38.
    Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216.CrossRefPubMedGoogle Scholar
  39. 39.
    Sisodia SS, Sollner-Webb B, Cleveland DW (1987) Specificity of RNA maturation pathways: RNAs transcribed by RNA polymerase III are not substrates for splicing or polyadenylation. Mol Cell Biol 7:3602–3612.PubMedGoogle Scholar
  40. 40.
    Carbon P, Murgo S, Ebel JP, Krol A, Tebb G, Mattaj LW (1987) A common octamer motif binding protein is involved in the transcription of U6 snRNA by RNA polymerase III and U2 snRNA by RNA polymerase II. Cell 51:71–79.CrossRefPubMedGoogle Scholar
  41. 41.
    Myslinski E, Ame JC, Krol A, Carbon P (2001) An unusually compact external promoter for RNA polymerase III transcription of the human H1RNA gene. Nucleic Acids Res 29:2502–2509.CrossRefPubMedGoogle Scholar
  42. 42.
    Joyner A (ed) (1993) Gene targeting: a practical approach. Oxford University Press, Oxford, UK.Google Scholar
  43. 43.
    Wassarman PM, Keller GM (eds) (2003) Methods in enzymology, vol 365: differentiation of embryonic stem cells. Elsevier Academic Press, London.Google Scholar
  44. 44.
    Wang ZQ, Kiefer F, Urbanek P, Wagner EF (1997) Generation of completely embryonic stem cell-derived mutant mice using tetraploid blastocyst injection. Mech Dev 62:137–145.CrossRefPubMedGoogle Scholar
  45. 45.
    Kunath T, Gish G, Lickert H, Jones N, Pawson T, Rossant J (2003) Transgenic RNA interference in ES cell-derived embryos recapitulates a genetic null pheno-type. Nat Biotechnol 21:559–561.CrossRefPubMedGoogle Scholar
  46. 46.
    Eggan K, Akutsu H, Loring J, Jackson-Grusby L, Klemm M, Rideout WM, III, Yanagimachi R, Jaenisch R (2001) Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc Natl Acad Sci USA 98:6209–6214.CrossRefPubMedGoogle Scholar
  47. 47.
    Brummelkamp TR, Bernards R, Agami R (2002) Stable suppression of tumori-genicity by virus-mediated RNA interference. Cancer Cell 2:243–247.CrossRefPubMedGoogle Scholar
  48. 48.
    Barton GM, Medzhitov R (2002) Retroviral delivery of small interfering RNA into primary cells. Proc Natl Acad Sci USA 99:14943–14945.CrossRefPubMedGoogle Scholar
  49. 49.
    Tomar RS, Matta H, Chaudhary PM (2003) Use of adeno-associated viral vector for delivery of small interfering RNA. Oncogene 22:5712–5715.CrossRefPubMedGoogle Scholar
  50. 50.
    Xia H, Mao Q, Paulson HL, Davidson BL (2002) siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol 20:1006–1010.CrossRefPubMedGoogle Scholar
  51. 51.
    Hommel JD, Sears RM, Georgescu D, Simmons DL, DiLeone RJ (2003) Local gene knockdown in the brain using viral-mediated RNA interference. Nat Med 9:1539–1544.CrossRefPubMedGoogle Scholar
  52. 52.
    Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J, Rooney DL, Ihrig MM, McManus MT, Gertler FB et al. (2003) A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 33:401–406.CrossRefPubMedGoogle Scholar
  53. 53.
    Tiscornia G, Singer O, Ikawa M, Verma IM (2003) A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc Natl Acad Sci USA 100:1844–1848.CrossRefPubMedGoogle Scholar
  54. 54.
    Kasim V, Miyagishi M, Taira K (2003) Control of siRNA expression utilizing Cre-loxP recombination system. Nucleic Acids Res Suppl:255–256.Google Scholar
  55. 55.
    Fritsch L, Martinez LA, Sekhri R, Naguibneva I, Gerard M, Vandromme M, Schaef-fer L, Harel-Bellan A (2004) Conditional gene knock-down by CRE-dependent short interfering RNAs. EMBO Rep 5:178–182.CrossRefPubMedGoogle Scholar
  56. 56.
    Kasim V, Miyagishi M, Taira K (2004) Control of siRNA expression using the Cre-loxP recombination system. Nucleic Acids Res 32:e66.CrossRefPubMedGoogle Scholar
  57. 57.
    van de Wetering M, Oving I, Muncan V, Pon Fong MT, Brantjes H, van Leenen D, Holstege FC, Brummelkamp TR, Agami R, Clevers H (2003) Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO Rep 4:609–615.CrossRefPubMedGoogle Scholar
  58. 58.
    Czauderna F, Santel A, Hinz M, Fechtner M, Durieux B, Fisch G, Leenders F, Arnold W, Giese K, Klippel A et al. (2003) Inducible shRNA expression for application in a prostate cancer mouse model. Nucleic Acids Res 31:e127.CrossRefPubMedGoogle Scholar
  59. 59.
    Gupta S, Schoer RA, Egan JE, Hannon GJ, Mittal V (2004) Inducible, reversible, and stable RNA interference in mammalian cells. Proc Natl Acad Sci USA 101:1927–1932.CrossRefPubMedGoogle Scholar
  60. 60.
    Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22:326–330.CrossRefPubMedGoogle Scholar
  61. 61.
    Ui-Tei K, Naito Y, Takahashi F, Haraguchi T, Ohki-Hamazaki H, Juni A, Ueda R, Saigo K (2004) Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res 32:936–948.CrossRefPubMedGoogle Scholar
  62. 62.
    Paddison PJ, Silva JM, Conklin DS, Schlabach M, Li M, Aruleba S, Balija V, O'Shaughnessy A, Gnoj L, Scobie K et al. (2004) A resource for large-scale RNA-interference-based screens in mammals. Nature 428:427–431.CrossRefPubMedGoogle Scholar
  63. 63.
    Yu J Y, Taylor J, DeRuiter SL, Vojtek AB, Turne, DL (2003) Simultaneous inhibition of GSK3alpha and GSK3beta using hairpin siRNA expression vectors. Mol Ther 7:228–236.CrossRefPubMedGoogle Scholar
  64. 64.
    Heggestad AD, Notterpek L, Fletcher BS (2004) Transposon-based RNAi delivery system for generating knockdown cell lines. Biochem Biophys Res Commun 316:643–650.CrossRefPubMedGoogle Scholar
  65. 65.
    Lum L, Yao S, Mozer B, Rovescalli A, Von Kessler D, Nirenberg M, Beachy PA (2003) Identification of hedgehog pathway components by RNAi inDrosophila cultured cells. Science 299:2039–2045.CrossRefPubMedGoogle Scholar
  66. 66.
    Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M et al. (2003) Systematic functional analysis of theCaenorhabditis elegans genome using RNAi. Nature 421:231–237.CrossRefPubMedGoogle Scholar
  67. 67.
    Lee SS, Lee RY, Fraser AG, Kamath RS, Ahringer J, Ruvkun G (2003) A systematic RNAi screen identifies a critical role for mitochondria inC. elegans longevity. Nat Genet 33:40–48.CrossRefPubMedGoogle Scholar
  68. 68.
    Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer J (2000) Functional genomic analysis ofC. elegans chromosome I by systematic RNA interference. Nature 408:325–330.CrossRefPubMedGoogle Scholar
  69. 69.
    Berns K, Hijmans EM, Mullenders J, Brummelkamp TR, Velds A, Heimerikx M, Kerkhoven RM, Madiredjo M, Nijkamp W, Weigelt B et al. (2004) A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428:431–437.CrossRefPubMedGoogle Scholar
  70. 70.
    Zheng L, Liu J, Batalov S, Zhou D, Orth A, Ding S, Schultz PG (2004) An approach to genomewide screens of expressed small interfering RNAs in mammalian cells. Proc Natl Acad Sci USA 101:135–140.CrossRefPubMedGoogle Scholar
  71. 71.
    Luo B, Heard AD, Lodish HF (2004) Small interfering RNA production by enzymatic engineering of DNA (SPEED). Proc Natl Acad Sci USA.Google Scholar
  72. 72.
    Shirane D, Sugao K, Namiki S, Tanabe M, Iino M, Hirose K (2004) Enzymatic production of RNAi libraries from cDNAs. Nat Genet 36:190–196.CrossRefPubMedGoogle Scholar
  73. 73.
    Sen G, Wehrman TS, Myers JW, Blau HM (2004) Restriction enzyme-generated siRNA (REGS) vectors and libraries. Nat Genet 36:183–189.CrossRefPubMedGoogle Scholar
  74. 74.
    Wolf E, Schernthaner W, Zakhartchenko V, Prelle K, Stojkovic M, Brem G (2000) Transgenic technology in farm animals—progress and perspectives. Exp Physiol 85:615–625.CrossRefPubMedGoogle Scholar
  75. 75.
    Mullins LJ, Mullins JJ (1996) Transgenesis in the rat and larger mammals. J Clin Invest 97:1557–1560.CrossRefPubMedGoogle Scholar
  76. 76.
    Hofmann A, Kessler B, Ewerling S, Weppert M, Vogg B, Ludwig H, Stojkovic M, Boelhauve M, Brem G, Wolf E et al. (2003) Efficient transgenesis in farm animals by lentiviral vectors. EMBO Rep 4:1054–1060.CrossRefPubMedGoogle Scholar
  77. 77.
    Hofmann A, Zakhartchenko V, Weppert M, Sebald H, Wenigerkind H, Brem G, Wolf E, Pfeifer A (2004) Generation of transgenic cattle by lentiviral gene transfer into oocytes. Biol Reprod. Epub.Google Scholar
  78. 78.
    Buehr M, Nichols J, Stenhouse F, Mountford P, Greenhalgh CJ, Kantachuvesiri S, Brooker G, Mullins J, Smith AG (2003) Rapid loss of Oct-4 and pluripotency in cultured rodent blastocysts and derivative cell lines. Biol Reprod 68:222–229.CrossRefPubMedGoogle Scholar
  79. 79.
    Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, Scott G, Steffen D, Worley KC, Burch PE et al. (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428:493–521.CrossRefPubMedGoogle Scholar
  80. 80.
    Hasuwa H, Kaseda K, Einarsdottir T, Okabe M (2002) Small interfering RNA and gene silencing in transgenic mice and rats. FEBS Lett 532:227–230.CrossRefPubMedGoogle Scholar
  81. 81.
    Dorn G, Patel S, Wotherspoon G, Hemmings-Mieszczak M, Barclay J, Natt FJ, Martin P, Bevan S, Fox A, Ganju P et al. (2004) siRNA relieves chronic neuropathic pain. Nucleic Acids Res 32:e49.CrossRefPubMedGoogle Scholar
  82. 82.
    Eggan K, Jaenisch R (2003) Differentiation of F1 embryonic stem cells into viable male and female mice by tetraploid embryo complementation. Methods Enzymol 365:25–39.CrossRefPubMedGoogle Scholar
  83. 83.
    Eggan K, Rode A, Jentsch I, Samuel C, Hennek T, Tintrup H, Zevnik B, Erwin J, Loring J, Jackson-Grusby L et al. (2002) Male and female mice derived from the same embryonic stem cell clone by tetraploid embryo complementation. Nat Bio-technol 20:455–459.CrossRefGoogle Scholar
  84. 84.
    Nagy A, Gertsenstein M, Vintersten K, Behringer R (2003) Manipulating the mouse embryo: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  85. 85.
    Wood SA, Allen ND, Rossant J, Auerbach A, Nagy A (1993) Non-injection methods for the production of embryonic stem cell-embryo chimaeras. Nature 365:87–89.CrossRefPubMedGoogle Scholar
  86. 86.
    Nagy, A, Rossant J (1996) Targeted mutagenesis: analysis of phenotype without germ line transmission. J Clin Invest 97:1360–1365.CrossRefPubMedGoogle Scholar
  87. 87.
    Elbashir SM, Harborth J, Weber K, Tuschl T (2002) Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26:199–213.CrossRefPubMedGoogle Scholar
  88. 88.
    Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T (2001) Functional anatomy of siRNAs for mediating efficient RNAi inDrosophila melanogaster embryo lysate. Embo J 20:6877–6888.CrossRefPubMedGoogle Scholar
  89. 89.
    Scacheri PC, Rozenblatt-Rosen O, Caplen NJ, Wolfsberg TG, Umayam L, Lee JC, Hughes C.M, Shanmugam KS, Bhattacharjee A, Meyerson M et al. (2004) Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc Natl Acad Sci USA 101:1892– 1897.CrossRefPubMedGoogle Scholar
  90. 90.
    Hadjantonakis AK, Pirity M, Nagy A (1999) Cre recombinase mediated alterations of the mouse genome using embryonic stem cells. In: Sharpe PT, Mason I (eds). Methods in molecular biology, vol. 97. Humana Press, Totowa, NJ, pp. 108–119.Google Scholar
  91. 91.
    Wu W, Hodges E, Redelius J, Hoog C (2004) A novel approach for evaluating the efficiency of siRNAs on protein levels in cultured cells. Nucleic Acids Res 32:e17.CrossRefPubMedGoogle Scholar
  92. 92.
    Rossant J, Spence A (1998) Chimeras and mosaics in mouse mutant analysis. Trends Genet 14:358–363.CrossRefPubMedGoogle Scholar
  93. 93.
    Carmell MA, Zhang L, Conklin DS, Hannon GJ, Rosenquist TA (2003) Germline transmission of RNAi in mice. Nat Struct Biol 10:91–92.CrossRefPubMedGoogle Scholar
  94. 94.
    Lee YS, Nakahara K, Pham JW, Kim K, He Z, Sontheimer EJ, Carthew RW (2004) Distinct roles forDrosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117:69–81.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Tilo Kunath
    • 1
  1. 1.Institute for Stem Cell ResearchUniversity of EdinburghEdinburghUK

Personalised recommendations