Skip to main content

Assembly and Glycerol Gradient Isolation of Yeast Spliceosomes Containing Transcribed or Synthetic U6 snRNA

  • Protocol
RNA-Protein Interaction Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 488))

Summary

Studies of RNA—protein interactions often require assembly of the RNA—protein complex using in vitro synthesized RNA or recombinant protein. Here, we describe a protocol to assemble a functional spliceosome in yeast extracts using transcribed or synthetic RNAs. The in vitro assembled spliceosome is stable and can be isolated by sedimentation through glycerol gradients for subsequent analysis. The protocols describe two procedures to prepare RNA: using bacte-riophage RNA polymerases or ligation of RNA oligos using T4 DNA ligase. We also describe the preparation of splicing competent yeast extracts, the assembly of the spliceosome, and the isolation of the spliceosome by glycerol gradient sedimentation. To allow exogenously added U6 RNA to be incorporated into the spliceosome, the endogenous U6 small nuclear RNA (snRNA) in the extract is eliminated by an antisense U6 DNA oligo and ribonuclease H; a “neutralizing” U6 DNA oligo was then added to protect the incoming U6 RNA. This protocol allows study of the role individual bases or the phosphate backbone of U6 plays in splicing and of the interaction between U6 snRNA and the spliceosomal proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haynes, S. R. (1992) The RNP motif protein family. New Biol. 4, 421–429.

    CAS  PubMed  Google Scholar 

  2. Brow, D. A. (2002) Allosteric cascade of spliceosome activation. Annu. Rev. Genet. 36, 333–360.

    Article  CAS  PubMed  Google Scholar 

  3. Staley, J. P., and Guthrie, C. (1998) Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell 92, 315–326.

    Article  CAS  PubMed  Google Scholar 

  4. Brody, E., and Abelson, J. (1985) The “spliceosome”: yeast pre-messenger RNA associates with a 40S complex in a splicing-dependent reaction. Science 228, 963–967.

    Article  CAS  PubMed  Google Scholar 

  5. Lin, R. J., Lustig, A. J., and Abelson, J. (1987) Splicing of yeast nuclear pre-mRNA in vitro requires a functional 40S spliceosome and several extrinsic factors. Genes Dev. 1, 7–18.

    Article  CAS  PubMed  Google Scholar 

  6. Grabowski, P. J., Seiler, S. R., and Sharp, P. A. (1985) A multicomponent complex is involved in the splicing of messenger RNA precursors. Cell 42, 345–353.

    Article  CAS  PubMed  Google Scholar 

  7. Fabrizio, P., McPheeters, D. S., and Abelson, J. (1989) In vitro assembly of yeast u6 snRNP: a functional assay. Genes Dev. 3, 2137–2150.

    Article  CAS  PubMed  Google Scholar 

  8. Yu, Y. T., Maroney, P. A., and Nilsen, T. W. (1993) Functional reconstitution of u6 snRNA in nematode cis- and trans-splicing: U6 can serve as both a branch acceptor and a 5′ exon. Cell 75, 1049–1059.

    Article  CAS  PubMed  Google Scholar 

  9. Black, D. L., and Steitz, J. A. (1986) Pre-mRNA splicing in vitro requires intact U4/U6 small nuclear ribonucleoprotein. Cell 46, 697–704.

    Article  CAS  PubMed  Google Scholar 

  10. Kramer, A., Keller, W., Appel, B., and Luhrmann, R. (1984) The 5′ terminus of the RNA moiety of U1 small nuclear ribonucleoprotein particles is required for the splicing of messenger RNA precursors. Cell 38, 299–307.

    Article  CAS  PubMed  Google Scholar 

  11. Winkelmann, G., Bach, M., and Luhrmann, R. (1989) Evidence from complementation assays in vitro that U5 snRNP is required for both steps of mRNA splicing. EMBO J. 8, 3105–3112.

    CAS  PubMed  Google Scholar 

  12. Bringmann, P., Rinke, J., Appel, B., Reuter, R., and Luhrmann, R. (1983) Purification of snRNPs U1, U2, U4, U5 and u6 with 2,2,7-trimethylguanosine-specific antibody and definition of their constituent proteins reacting with anti-Sm and anti-(U1)RNP antisera. EMBO J. 2, 1129–1135.

    CAS  PubMed  Google Scholar 

  13. Frendewey, D., and Keller, W. (1985) Stepwise assembly of a pre-mRNA splicing complex requires U-snRNPs and specific intron sequences. Cell 42, 355–367.

    Article  CAS  PubMed  Google Scholar 

  14. Konarska, M. M., and Sharp, P. A. (1986) Electrophoretic separation of complexes involved in the splicing of precursors to mRNAs. Cell 46, 845–855.

    Article  CAS  PubMed  Google Scholar 

  15. Das, R., and Reed, R. (1999) Resolution of the mammalian E complex and the ATP-dependent spliceosomal complexes on native agarose mini-gels. RNA 5, 1504–1508.

    Article  CAS  PubMed  Google Scholar 

  16. Zhou, Z., Sim, J., Griffith, J., and Reed, R. (2002) Purification and electron microscopic visualization of functional human spliceosomes. Proc. Natl. Acad. Sci. u. S. A. 99, 12203–12207.

    Article  CAS  PubMed  Google Scholar 

  17. Jurica, M. S., Licklider, L. J., Gygi, S. R., Grigorieff, N., and Moore, M. J. (2002) Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis. RNA 8, 426–439.

    Article  CAS  PubMed  Google Scholar 

  18. Yean, S. L., and Lin, R. J. (1991) U4 small nuclear RNA dissociates from a yeast spliceosome and does not participate in the subsequent splicing reaction. Mol. Cell. Biol. 11, 5571–5577.

    CAS  PubMed  Google Scholar 

  19. Kim, S. H., and Lin, R. J. (1996) Spliceosome activation by PRP2 ATPase prior to the first transesterification reaction of pre-mRNA splicing. Mol. Cell. Biol. 16, 6810–6819.

    CAS  PubMed  Google Scholar 

  20. Yean, S. L., and Lin, R. J. (1996) Analysis of small nuclear RNAs in a precata-lytic spliceosome. Gene Expr. 5, 301–313.

    CAS  PubMed  Google Scholar 

  21. Lin, R. J., Newman, A. J., Cheng, S. C., and Abelson, J. (1985) Yeast mRNA splicing in vitro. J. Biol. Chem. 260, 14780–14792.

    CAS  PubMed  Google Scholar 

  22. Aebi, M., Clark, M. W., Vijayraghavan, U., and Abelson, J. (1990) A yeast mutant, PRP20, altered in mRNA metabolism and maintenance of the nuclear structure, is defective in a gene homologous to the human gene RCC1 which is involved in the control of chromosome condensation. Mol. Gen. Genet. 224, 72–80.

    Article  CAS  PubMed  Google Scholar 

  23. Kurschat, W. C., Muller, J., Wombacher, R., and Helm, M. (2005) Optimizing splinted ligation of highly structured small RNAs. RNA 11, 1909–1914.

    Article  CAS  PubMed  Google Scholar 

  24. Moore, M. J., and Query, C. C. (2000) Joining of RNAs by splinted ligation. Methods Enzymol. 317, 109–123.

    Article  CAS  PubMed  Google Scholar 

  25. Ryan, D. E., and Abelson, J. (2002) The conserved central domain of yeast U6 snRNA: importance of U2-U6 helix Ia in spliceosome assembly. RNA 8, 997– 1010.

    Article  CAS  PubMed  Google Scholar 

  26. Yean, S. L., Wuenschell, G., Termini, J., and Lin, R. J. (2000) Metal-ion coordination by U6 small nuclear RNA contributes to catalysis in the spliceosome. Nature 408, 881–884.

    Article  CAS  PubMed  Google Scholar 

  27. Cheng, S. C., Newman, A. N., Lin, R. J., McFarland, G. D., and Abelson, J. N. (1990) Preparation and fractionation of yeast splicing extract. Methods Enzymol. 181, 89–96.

    Article  CAS  PubMed  Google Scholar 

  28. Lustig, A. J., Lin, R. J., and Abelson, J. (1986) The yeast RNA gene products are essential for mRNA splicing in vitro. Cell 47, 953–963.

    Article  CAS  PubMed  Google Scholar 

  29. Nakamura, H., Oda, Y. , Iwai, S., et al. (1991) How does RNase H recognize a DNA.RNA hybrid? Proc. Natl. Acad. Sci. U. S. A. 88, 11535–11539.

    Article  CAS  PubMed  Google Scholar 

  30. Kretzner, L., Rymond, B. C., and Rosbash, M. (1987) S. cerevisiae U1 RNA is large and has limited primary sequence homology to metazoan U1 snRNA. Cell 50, 593–602.

    Article  CAS  PubMed  Google Scholar 

  31. McPheeters, D. S., Fabrizio, P., and Abelson, J. (1989) In vitro reconstitution of functional yeast U2 snRNPs. Genes Dev. 3, 2124–2136.

    Article  CAS  PubMed  Google Scholar 

  32. Fabrizio, P., and Abelson, J. (1990) Two domains of yeast U6 small nuclear RNA required for both steps of nuclear precursor messenger RNA splicing. Science 250, 404–409.

    Article  CAS  PubMed  Google Scholar 

  33. McGrail, J. C., Tatum, E. M., and O'Keefe, R. T. (2006) Mutation in the U2 snRNA influences exon interactions of U5 snRNA loop 1 during pre-mRNA splicing. EMBO J. 25, 3813–3822.

    Article  CAS  PubMed  Google Scholar 

  34. Fabrizio, P., and Abelson, J. (1992) Thiophosphates in yeast U6 snRNA specifically affect pre-mRNA splicing in vitro. Nucleic Acids Res. 20, 3659–3664.

    Article  CAS  PubMed  Google Scholar 

  35. McGrail, J. C., Tatum, E. M., and O'Keefe, R. T. (2006) Mutation in the U2 snRNA influences exon interactions of U5 snRNA loop 1 during pre-mRNA splicing. EMBO J. 25, 3813–3822.

    Article  CAS  PubMed  Google Scholar 

  36. Roscigno, R. F., and Garcia-Blanco, M. A. (1995) SR proteins escort the U4/U6.U5 tri-snRNP to the spliceosome. RNA 1, 692–706.

    CAS  PubMed  Google Scholar 

  37. Schenkel, J. (1991) Isolation of HnRNP particles from Drosophila melanogaster embryos. Biochem. Int. 24, 423–428.

    CAS  PubMed  Google Scholar 

  38. Clark, M. W., Goelz, S., and Abelson, J. (1988) Electron microscopic identification of the yeast spliceosome. EMBO J. 7, 3829–3836.

    CAS  PubMed  Google Scholar 

  39. Konarska, M. M., Grabowski, P. J., Padgett, R. A., and Sharp, P. A. (1985) Characterization of the branch site in lariat RNAs produced by splicing of mRNA precursors. Nature 313, 552–557.

    Article  CAS  PubMed  Google Scholar 

  40. Cheng, S. C., and Abelson, J. (1987) Spliceosome assembly in yeast. Genes Dev. 1, 1014–1027.

    Article  CAS  PubMed  Google Scholar 

  41. Moore, M. J., and Sharp, P. A. (1993) Evidence for two active sites in the spliceo-some provided by stereochemistry of pre-mRNA splicing. Nature 365, 364–368.

    Article  CAS  PubMed  Google Scholar 

  42. Uhlenbeck, O. C. (1995) Keeping RNA happy. RNA 1, 4–6.

    CAS  PubMed  Google Scholar 

  43. Kitamra, K., and Yamamoto, Y. (1972) Prification and properties of an enzyme, zymolyase, which lyses viable yeast cells. Arch. Biochem. Biophys. 153, 403–406.

    Article  Google Scholar 

  44. Vijayraghavan, μ., Company, M., and Abelson, J. (1989) Isolation and characterization of pre-mRNA splicing mμtants of Saccharomyces cerevisiae. Genes Dev. 3, 1206–1216.

    Article  CAS  PubMed  Google Scholar 

  45. Rymond, B. C., Pikielny, C., Seraphin, B., Legrain, P., and Rosbash, M. (1990) Measμrement and analysis of yeast pre-mRNA seqμence contribμtion to splicing efficiency. Methods Enzymol. 181, 122–147.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank members of the Lin laboratory for sharing reagents and protocols. K.J.D. was supported in part by Ruth L. Kirschstein Predoctoral Fellowship F31 GM67579 from the National Institutes of Health (NIH). This work was supported by NIH R01 grant GM40639 and funds from City of Hope Beckman Research Institute to R.J.L.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Dery, K.J., Yean, SL., Lin, RJ. (2008). Assembly and Glycerol Gradient Isolation of Yeast Spliceosomes Containing Transcribed or Synthetic U6 snRNA. In: Lin, RJ. (eds) RNA-Protein Interaction Protocols. Methods in Molecular Biology, vol 488. Humana Press. https://doi.org/10.1007/978-1-60327-475-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-475-3_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-419-7

  • Online ISBN: 978-1-60327-475-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics