Skip to main content

Manipulation of Gene Expression During Zebrafish Embryonic Development Using Transient Approaches

  • Protocol
Wnt Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 469))

Abstract

The rapid embryonic development and high fecundity of zebrafish contribute to the great advantages of this model for the study of developmental genetics. Transient disruption of the normal function of a gene during development can be achieved by microinjecting mRNA, DNA or short chemically stabilized anti-sense oligomers, called morpholinos (MOs), into early zebrafish embryos. The ensuing develop ment of the microinjected embryos is observed over the following hours and days to analyze the impact of the microinjected products on embryogenesis. Compared to stable reverse genetic approaches (sta ble transgenesis, targeted mutants recovered by TILLING), these transient reverse genetic approaches are vastly quicker, relatively affordable, and require little animal facility space. Common applications of these methodologies allow analysis of gain-of-function (gene overexpression or dominant active), loss-of-function (gene knock down or dominant negative), mosaic analysis, lineage-restricted studies and cell tracing experiments. The use of these transient approaches for the manipulation of gene expression has improved our understanding of many key developmental pathways including both the Wnt/β -catenin and Wnt/PCP pathways, as covered in some detail in Chapter 17 of this book. This chapter describes the most common and versatile approaches: gain of function and loss of function using DNA and mRNA injections and loss of function using MOs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., (1995) Stages of embryonic devel opment of the zebrafish.Dev Dyn203, 253–310.

    PubMed  CAS  Google Scholar 

  2. Gilmour, D. T., Jessen, J. R., Lin, S. (2002) in (Nusslein-Volhard C., D. R., ed.)Zebrafish: Practical Approach, pp. 121–143, Oxford University Press, New York.

    Google Scholar 

  3. Driever, W., Stemple, D., Schier, A., (1994) Zebrafish: genetic tools for studying ver tebrate development.Trends Genet10, 152–159.

    PubMed  CAS  Google Scholar 

  4. Lane, C. D. (1983) The fate of genes, messengers, and proteins introduced into Xenopus oocytes.Curr Top Dev Biol18, 89–116.

    PubMed  CAS  Google Scholar 

  5. Krieg, P. A., Melton, D. A. (1984) Func tional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs.Nucleic Acids Res12, 7057–7070.

    PubMed  CAS  Google Scholar 

  6. Durbin, L., Brennan, C., Shiomi, K., (1998) Eph signaling is required for segmentation and differentiation of the somites.Genes Dev12, 3096–3109.

    PubMed  CAS  Google Scholar 

  7. Ando, H., Furuta, T., Tsien, R. Y., (2001) Photo-mediated gene activation using caged RNA/DNA in zebrafish embryos.Nat Genet28, 317–325.

    PubMed  CAS  Google Scholar 

  8. Higashijima, S., Okamoto, H., Ueno, N., (1997) High-frequency generation of transgenic zebrafish which reliably express GFP in whole muscles or the whole body by using promoters of zebrafish origin.Dev Biol192, 289–299.

    PubMed  CAS  Google Scholar 

  9. Bayer, T. A., Campos-Ortega, J. A. (1992) A transgene containing lacZ is expressed in primary sensory neurons in zebrafish.Devel opment115, 421–426.

    CAS  Google Scholar 

  10. Stuart, G. W., Vielkind, J. R., McMurray, J. V., (1990) Stable lines of transgenic zebrafish exhibit reproducible patterns of transgene expression.Development109, 577–584.

    PubMed  CAS  Google Scholar 

  11. Joore, J. (1999) Promoter analysis in zebrafish embryos.Methods Mol Biol127, 155–166.

    PubMed  CAS  Google Scholar 

  12. Liu, W. Y., Wang, Y., Sun, Y. H., (2005) Efficient RNA interference in zebrafish embryos using siRNA synthesized with SP6 RNA polymerase.Dev Growth Differ47, 323–331.

    PubMed  CAS  Google Scholar 

  13. Dodd, A., Chambers, S. P., Love, D. R. (2004) Short interfering RNA-mediated gene targeting in the zebrafish.FEBS Lett561, 89–93.

    PubMed  CAS  Google Scholar 

  14. Zhao, Z., Cao, Y., Li, M., (2001) Double-stranded RNA injection produces non specific defects in zebrafish.Dev Biol229, 215–223.

    PubMed  CAS  Google Scholar 

  15. Acosta, J., Carpio, Y., Borroto, I., (2005) Myostatin gene silenced by RNAi show a zebrafish giant phenotype.J Biotechnol119, 324–331.

    PubMed  CAS  Google Scholar 

  16. Wang, N., Sun, Y. H., Liu, J., et al. (2007) Knock down of gfp and no tail expression in zebrafish embryo by in vivo-transcribed short hairpin RNA with T7 plasmid system.J Biomed Sci.epub. Jul 12.

    Google Scholar 

  17. Oates, A. C., Bruce, A. E., Ho, R. K. (2000) Too much interference: injection of double-stranded RNA has nonspecific effects in the zebrafish embryo.Dev Biol224, 20–28.

    PubMed  CAS  Google Scholar 

  18. Nasevicius, A., Ekker, S. C. (2000) Effec tive targeted gene ‘knockdown’ in zebrafish.Nat Genet26, 216–220.

    PubMed  CAS  Google Scholar 

  19. Nasevicius, A., Ekker, S. C. (2001) The zebrafish as a novel system for functional genomics and therapeutic development applications.Curr Opin Mol Ther3, 224–228.

    PubMed  CAS  Google Scholar 

  20. Summerton, J., Weller, D. (1997) Mor-pholino antisense oligomers: design, prepa ration, and properties.Antisense Nucleic Acid Drug Dev7, 187–195.

    PubMed  CAS  Google Scholar 

  21. Summerton, J. (1999) Morpholino anti-sense oligomers: the case for an RNase H-independent structural type.Biochim Biophys Acta1489, 141–158.

    PubMed  CAS  Google Scholar 

  22. Heasman, J. (2002) Morpholino oligos: making sense of antisense?Dev Biol243, 209–214.

    PubMed  CAS  Google Scholar 

  23. Phillips, B. T., Bolding, K., Riley, B. B. (2001) Zebrafish fgf3 and fgf8 encode redundant functions required for otic pla-code induction.Dev Biol235, 351–365.

    PubMed  CAS  Google Scholar 

  24. Segawa, H., Miyashita, T., Hirate, Y., (2001) Functional repression of Islet-2 by disruption of complex with Ldb impairs peripheral axonal outgrowth in embryonic zebrafish.Neuron30, 423–436.

    PubMed  CAS  Google Scholar 

  25. Muller, F., Lakatos, L., Dantonel, J., (2001) TBP is not universally required for zygotic RNA polymerase II transcription in zebrafish.Curr Biol11, 282–287.

    PubMed  CAS  Google Scholar 

  26. Shepherd, I. T., Beattie, C. E., Raible, D. W. (2001) Functional analysis of zebrafish GDNF.Dev Biol231, 420–435.

    PubMed  CAS  Google Scholar 

  27. Yang, Z., Liu, N., Lin, S. (2001) A zebrafish forebrain-specific zinc finger gene can induce ectopic dlx2 and dlx6 expression.Dev Biol231, 138–148.

    PubMed  CAS  Google Scholar 

  28. Bauer, H., Lele, Z., Rauch, G. J., (2001) The type I serine/threonine kinase receptor Alk8/Lost-a-fin is required for Bmp2b/7 signal transduction during dorsoventral pat terning of the zebrafish embryo.Develop ment128, 849–858.

    CAS  Google Scholar 

  29. Ross, J. J., Shimmi, O., Vilmos, P., (2001) Twisted gastrulation is a conserved extra cellular BMP antagonist.Nature410, 479–483.

    PubMed  CAS  Google Scholar 

  30. Nasevicius, A., Larson, J., Ekker, S. C. (2000) Distinct requirements for zebrafish angiogenesis revealed by a VEGF-A mor-phant.Yeast17, 294–301.

    PubMed  CAS  Google Scholar 

  31. (2001) Special morpholino edition.Genesis30 (3).

    Google Scholar 

  32. Corey, D. R., Abrams, J. M. (2001) Mor-pholino antisense oligonucleotides: tools for investigating vertebrate development.Genome Biol2, REVIEWS1015.

    Google Scholar 

  33. Tang, X., Maegawa, S., Weinberg, E. S., et al. (2007) Regulating Gene Expression in Zebrafish Embryos Using Light-Activated, Negatively Charged Peptide Nucleic Acids.J Am Chem Soc.epub. Aug 21.

    Google Scholar 

  34. Urtishak, K. A., Choob, M., Tian, X., (2003) Targeted gene knockdown in zebrafish using negatively charged pep-tide nucleic acid mimics.Dev Dyn228, 405–413.

    PubMed  CAS  Google Scholar 

  35. Westerfield, M. (2000) The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). University of Oregon Press, Eugene.

    Google Scholar 

  36. Amoyel, M., Cheng, Y. C., Jiang, Y. J., (2005) Wnt1 regulates neurogenesis and mediates lateral inhibition of boundary cell specification in the zebrafish hindbrain.Development132, 775–785.

    PubMed  CAS  Google Scholar 

  37. Lekven, A. C., Buckles, G. R., Kostakis, N., (2003) Wnt1 and wnt10b function redun dantly at the zebrafish midbrain-hindbrain boundary.Dev Biol254, 172–187.

    PubMed  CAS  Google Scholar 

  38. Wakahara, T., Kusu, N., Yamauchi, H., (2007) Fibin, a novel secreted lateral plate mesoderm signal, is essential for pectoral fin bud initiation in zebrafish.Dev Biol303, 527–535.

    PubMed  CAS  Google Scholar 

  39. Ober, E. A., Verkade, H., Field, H. A., (2006) Mesodermal Wnt2b signalling posi tively regulates liver specification.Nature442, 688–691.

    PubMed  CAS  Google Scholar 

  40. Shimizu, T., Bae, Y. K., Muraoka, O., (2005) Interaction of Wnt and caudal-related genes in zebrafish posterior body formation.Dev Biol279, 125–141.

    PubMed  CAS  Google Scholar 

  41. Matsui, T., Raya, A., Kawakami, Y., (2005) Noncanonical Wnt signaling regulates mid-line convergence of organ primordia dur ing zebrafish development.Genes Dev19, 164–175.

    PubMed  CAS  Google Scholar 

  42. Kim, H. J., Schleiffarth, J. R., Jessurun, J., (2005) Wnt5 signaling in vertebrate pan creas development.BMC Biol3, 23.

    PubMed  Google Scholar 

  43. Lele, Z., Bakkers, J., Hammerschmidt, M. (2001) Morpholino phenocopies of the swirl, snailhouse, somitabun, minifin, sil-berblick, and pipetail mutations.Genesis30, 190–194.

    PubMed  CAS  Google Scholar 

  44. Lekven, A. C., Thorpe, C. J., Waxman, J. S., (2001) Zebrafish wnt8 encodes two wnt8 proteins on a bicistronic transcript and is required for mesoderm and neurectoderm patterning.Dev Cell1, 103–114.

    PubMed  CAS  Google Scholar 

  45. Ramel, M. C., Buckles, G. R., Baker, K. D., (2005) WNT8 and BMP2B co-regulate non-axial mesoderm patterning during zebrafish gastrulation.Dev Biol287, 237–248.

    PubMed  CAS  Google Scholar 

  46. Kim, S. H., Shin, J., Park, H. C., (2002) Specification of an anterior neuroecto-derm patterning by Frizzled8a-mediated Wnt8b signalling during late gastrulation in zebrafish.Development129, 4443–4455.

    PubMed  CAS  Google Scholar 

  47. Riley, B. B., Chiang, M. Y., Storch, E. M., (2004) Rhombomere boundaries are Wnt signaling centers that regulate metameric patterning in the zebrafish hindbrain.Dev Dyn231, 278–291.

    PubMed  CAS  Google Scholar 

  48. Muyskens, J. B., Kimmel, C. B. (2007) Tbx16 cooperates with Wnt11 in assem bling the zebrafish organizer.Mech Dev124, 35–42.

    PubMed  CAS  Google Scholar 

  49. Fong, S. H., Emelyanov, A., Teh, C., (2005) Wnt signalling mediated by Tbx2b regulates cell migration during formation of the neu ral plate.Development132, 3587–3596.

    PubMed  CAS  Google Scholar 

  50. Wada, H., Tanaka, H., Nakayama, S., (2006) Frizzled3a and Celsr2 function in the neuroepithelium to regulate migration of facial motor neurons in the develop ing zebrafish hindbrain.Development133, 4749–4759.

    PubMed  CAS  Google Scholar 

  51. Cavodeassi, F., Carreira-Barbosa, F., Young, R. M., (2005) Early stages of zebrafish eye formation require the coordinated activity of Wnt11, Fz5, and the Wnt/beta-catenin pathway.Neuron47, 43–56.

    PubMed  CAS  Google Scholar 

  52. Lyman Gingerich, J., Westfall, T. A., Slu sarski, D. C., (2005) hecate, a zebrafish maternal effect gene, affects dorsal organizer induction and intracellular calcium transient frequency.Dev Biol286, 427–439.

    PubMed  CAS  Google Scholar 

  53. Bellipanni, G., Varga, M., Maegawa, S., (2006) Essential and opposing roles of zebrafish beta-catenins in the formation of dorsal axial structures and neurectoderm.Development133, 1299–1309.

    PubMed  CAS  Google Scholar 

  54. Nadauld, L. D., Sandoval, I. T., Chidester, S., (2004) Adenomatous polyposis coli control of retinoic acid biosynthesis is critical for zebrafish intestinal develop ment and differentiation.J Biol Chem279, 51581–51589.

    PubMed  CAS  Google Scholar 

  55. Shelton, D. N., Sandoval, I. T., Eisinger, A., (2006) Up-regulation of CYP26A1 in adenomatous polyposis coli-deficient ver tebrates via a WNT-dependent mechanism: implications for intestinal cell differentiation and colon tumor development.Cancer Res66, 7571–7577.

    PubMed  CAS  Google Scholar 

  56. Meier, N., Krpic, S., Rodriguez, P., (2006) Novel binding partners of Ldb1 are required for haematopoietic development.Develop ment133, 4913–4923.

    CAS  Google Scholar 

  57. Nyholm, M. K., Wu, S. F., Dorsky, R. I., (2007) The zebrafish zic2a-zic5 gene pair acts downstream of canonical Wnt signaling to control cell proliferation in the develop ing tectum.Development134, 735–746.

    PubMed  CAS  Google Scholar 

  58. Dorsky, R. I., Itoh, M., Moon, R. T., (2003) Two tcf3 genes cooperate to pat tern the zebrafish brain.Development130, 1937–1947.

    PubMed  CAS  Google Scholar 

  59. Caneparo, L., Huang, Y. L., Staudt, N., (2007) Dickkopf-1 regulates gastrulation movements by coordinated modulation of Wnt/beta catenin and Wnt/PCP activi ties, through interaction with the Dally-like homolog Knypek.Genes Dev21, 465–480.

    PubMed  CAS  Google Scholar 

  60. Ishitani, T., Matsumoto, K., Chitnis, A. B., (2005) Nrarp functions to modulate neural-crest-cell differentiation by regulat ing LEF1 protein stability.Nat Cell Biol7, 1106–1112.

    PubMed  CAS  Google Scholar 

  61. Angers, S., Thorpe, C. J., Biechele, T. L., (2006) The KLHL12-Cullin-3 ubiq-uitin ligase negatively regulates the Wnt-beta-catenin pathway by targeting Dishevelled for degradation.Nat Cell Biol8, 348–357.

    PubMed  CAS  Google Scholar 

  62. Schwarz-Romond, T., Asbrand, C., Bakkers, J., (2002) The ankyrin repeat protein Diversin recruits Casein kinase Iepsilon to the beta-catenin degradation complex and acts in both canonical Wnt and Wnt/JNK signaling.Genes Dev16, 2073–2084.

    PubMed  CAS  Google Scholar 

  63. Seiliez, I., Thisse, B., Thisse, C. (2006) FoxA3 and goosecoid promote anterior neural fate through inhibition of Wnt8a activity before the onset of gastrulation.Dev Biol290, 152–163.

    PubMed  CAS  Google Scholar 

  64. Waxman, J. S., Hocking, A. M., Stoick, C. L.., (2004) Zebrafish Dapper1 and Dapper2 play distinct roles in Wnt-mediated develop mental processes.Development131, 5909– 5921.

    PubMed  CAS  Google Scholar 

  65. Zhang, L., Zhou, H., Su, Y.., (2004) Zebrafish Dpr2 inhibits mesoderm induc tion by promoting degradation of nodal receptors. Science 306, 114–117.

    PubMed  CAS  Google Scholar 

  66. Witzel, S., Zimyanin, V., Carreira-Barbosa, F.., (2006) Wnt11 controls cell contact persist ence by local accumulation of Frizzled 7 at the plasma membrane.J Cell Biol175, 791–802.

    PubMed  CAS  Google Scholar 

  67. Zhu, S., Liu, L., Korzh, V.., (2006) RhoA acts downstream of Wnt5 and Wnt11 to regulate convergence and extension move ments by involving effectors Rho kinase and Diaphanous: use of zebrafish as an in vivo model for GTPase signaling.Cell Signal18, 359–372.

    PubMed  CAS  Google Scholar 

  68. Formstone, C. J., Mason, I. (2005) Combi natorial activity of Flamingo proteins directs convergence and extension within the early zebrafish embryo via the planar cell polarity pathway.Dev Biol282, 320–335.

    PubMed  CAS  Google Scholar 

  69. Park, M., Moon, R. T. (2002) The planar cell-polarity gene stbm regulates cell behav iour and cell fate in vertebrate embryos.Nat Cell Biol4, 20–25.

    PubMed  CAS  Google Scholar 

  70. Carreira-Barbosa, F., Concha, M. L., Takeuchi, M.., (2003) Prickle 1 regulates cell movements during gastrulation and neuronal migration in zebrafish.Develop ment130, 4037–4046.

    CAS  Google Scholar 

  71. Wada, H., Iwasaki, M., Sato, T.., (2005) Dual roles of zygotic and maternal Scrib-ble1 in neural migration and convergent extension movements in zebrafish embryos.Development132, 2273–2285.

    PubMed  CAS  Google Scholar 

  72. Sprague, J., Bayraktaroglu, L., Clements, D..,(2006) The Zebrafish Infromation net work (ZFIN): the zebrafish model organism database.Nucleic Acids Res34, D581– D585.

    PubMed  CAS  Google Scholar 

  73. Rembold, M., Lahiri, K., Foulkes, N. S., (2006) Transgenesis in fish: efficient selec tion of transgenic fish by co-injection with a fluorescent reporter construct.Nat Protoc1, 1133–1139.

    PubMed  CAS  Google Scholar 

  74. Ogino, H., McConnell, W. B., Grainger, R. M. (2006) High-throughput transgenesis in Xenopus using I-SceI meganuclease.Nat Protoc1, 1703–1710.

    PubMed  CAS  Google Scholar 

  75. Thermes, V., Grabher, C., Ristoratore, F., (2002) I-SceI meganuclease mediates highly efficient transgenesis in fish.Mech Dev118, 91–98.

    PubMed  CAS  Google Scholar 

  76. Hermanson, S., Davidson, A. E., Sivasubbu, S., (2004) Sleeping Beauty transposon for efficient gene delivery.Methods Cell Biol77, 349–362.

    PubMed  CAS  Google Scholar 

  77. Kawakami, K. (2005) Transposon tools and methods in zebrafish.Dev Dyn234, 244–254.

    PubMed  CAS  Google Scholar 

  78. Fisher, S., Grice, E. A., Vinton, R. M., (2006) Evaluating the biological relevance of putative enhancers using Tol2 transpo-son-mediated transgenesis in zebrafish.Nat Protoc1, 1297–1305.

    PubMed  CAS  Google Scholar 

  79. Turner, D. L., Weintraub, H. (1994) Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate.Genes Dev8, 1434–1447.

    PubMed  CAS  Google Scholar 

  80. Pelegri, F. (2003) Maternal factors in zebrafish development.Dev Dyn228, 535–554.

    PubMed  CAS  Google Scholar 

  81. Fernandez, J., Valladares, M., Fuentes, R., (2006) Reorganization of cytoplasm in the zebrafish oocyte and egg during early steps of ooplasmic segregation.Dev Dyn235, 656–671.

    PubMed  CAS  Google Scholar 

  82. Robu, M. E., Larson, J. D., Nasevicius, A., (2007) p53 activation by knockdown tech nologies.PLoS Genet3, e78.

    PubMed  Google Scholar 

  83. Kang, J. S., Oohashi, T., Kawakami, Y., (2004) Characterization of dermacan, a novel zebrafish lectican gene, expressed in dermal bones.Mech Dev121, 301–312.

    PubMed  CAS  Google Scholar 

  84. Oates, A. C., Ho, R. K. (2002) Hairy/ E(spl)-related (Her) genes are central com ponents of the segmentation oscillator and display redundancy with the Delta/Notch signaling pathway in the formation of ante rior segmental boundaries in the zebrafish.Development129, 2929–2946.

    PubMed  CAS  Google Scholar 

  85. Szeto, D. P., Griffin, K. J., Kimelman, D. (2002) HrT is required for cardiovascular development in zebrafish.Development129, 5093–5101.

    PubMed  CAS  Google Scholar 

  86. Draper, B. W., Morcos, P. A., Kimmel, C. B. (2001) Inhibition of zebrafish fgf8 pre-mRNA splicing with morpholino oligos: a quantifiable method for gene knockdown.Genesis30, 154–156.

    PubMed  CAS  Google Scholar 

  87. Yan, Y. L., Miller, C. T., Nissen, R. M., (2002) A zebrafish sox9 gene required for cartilage morphogenesis.Development129, 5065–5079.

    PubMed  CAS  Google Scholar 

  88. Parker, L. H., Schmidt, M., Jin, S. W., (2004) The endothelial-cell-derived secreted factor Egfl7 regulates vascular tube forma tion.Nature428, 754–758.

    PubMed  CAS  Google Scholar 

  89. Chocron, S., Verhoeven, M. C., Rentzsch, F., (2007) Zebrafish Bmp4 regulates left-right asymmetry at two distinct devel opmental time points.Dev Biol305, 577–588.

    PubMed  CAS  Google Scholar 

  90. Knight, R. D., Nair, S., Nelson, S. S., (2003) lockjaw encodes a zebrafish tfap2a required for early neural crest development.Develop ment130, 5755–5768.

    CAS  Google Scholar 

  91. Busch-Nentwich, E., Sollner, C., Roehl, H., (2004) The deafness gene dfna5 is crucial for ugdh expression and HA production in the developing ear in zebrafish.Development131, 943–951.

    PubMed  CAS  Google Scholar 

  92. Weidinger, G., Stebler, J., Slanchev, K., (2003) dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival.Curr Biol13, 1429–1434.

    PubMed  CAS  Google Scholar 

  93. Elsalini, O. A., von Gartzen, J., Cramer, M., (2003) Zebrafish hhex, nk2.1a, and pax2.1 regulate thyroid growth and differentiation downstream of Nodal-dependent transcrip tion factors.Dev Biol263, 67–80.

    PubMed  CAS  Google Scholar 

  94. Jopling, C., den Hertog, J. (2005) Fyn/Yes and non-canonical Wnt signalling converge on RhoA in vertebrate gastrulation cell movements.EMBO Rep6, 426–431.

    PubMed  CAS  Google Scholar 

  95. Shestopalov, I. A., Sinha, S., Chen, J. K. (2007) Light-controlled gene silencing in zebrafish embryos.Nat Chem Biol3, 650–651.

    PubMed  CAS  Google Scholar 

  96. Schneider, S., Steinbeisser, H., Warga, R. M., (1996) Beta-catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos.Mech Dev57, 191–198.

    PubMed  CAS  Google Scholar 

  97. Stachel, S. E., Grunwald, D. J., Myers, P. Z. (1993) Lithium perturbation and goosecoid expression identify a dorsal specification pathway in the pregastrula zebrafish.Devel opment117, 1261–1274.

    CAS  Google Scholar 

  98. van de Water, S., van de Wetering, M., Joore, J., (2001) Ectopic Wnt signal determines the eyeless phenotype of zebrafish master-blind mutant.Development128, 3877– 3888.

    PubMed  Google Scholar 

  99. Nojima, H., Shimizu, T., Kim, C. H., (2004) Genetic evidence for involvement of maternally derived Wnt canonical signaling in dorsal determination in zebrafish.Mech Dev121, 371–386.

    PubMed  CAS  Google Scholar 

  100. Heisenberg, C. P., Tada, M., Rauch, G. J., (2000) Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation.Nature405, 76–81.

    PubMed  CAS  Google Scholar 

  101. Pai, L. M., Orsulic, S., Bejsovec, A., (1997) Negative regulation of Armadillo, a Wing less effector in Drosophila.Development124, 2255–2266.

    PubMed  CAS  Google Scholar 

  102. Marlow, F., Topczewski, J., Sepich, D., (2002) Zebrafish Rho kinase 2 acts down stream of Wnt11 to mediate cell polarity and effective convergence and extension move ments.Curr Biol12, 876–884.

    PubMed  CAS  Google Scholar 

  103. Nasevicius, A., Hyatt, T., Kim, H., (1998) Evidence for a frizzled-mediated wnt path way required for zebrafish dorsal mesoderm formation.Development125, 4283–4292.

    PubMed  CAS  Google Scholar 

  104. Axelrod, J. D., Miller, J. R., Shulman, J. M., (1998) Differential recruitment of Dishev elled provides signaling specificity in the planar cell polarity and Wingless signaling pathways.Genes Dev12, 2610–2622.

    PubMed  CAS  Google Scholar 

  105. Boutros, M., Mihaly, J., Bouwmeester, T., (2000) Signaling specificity by Frizzled recep tors in Drosophila.Science288, 1825–1828.

    PubMed  CAS  Google Scholar 

  106. Penton, A., Wodarz, A., Nusse, R. (2002) A mutational analysis of dishevelled in Dro sophila defines novel domains in the dishev elled protein as well as novel suppressing alleles of axin.Genetics161, 747–762.

    PubMed  CAS  Google Scholar 

  107. Tada, M., Smith, J. C. (2000) Xwnt11 is a target of Xenopus Brachyury: regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway.Development127, 2227–2238.

    PubMed  CAS  Google Scholar 

  108. Pelegri, F., Maischein, H. M. (1998) Func tion of zebrafish beta-catenin and TCF-3 in dorsoventral patterning.Mech Dev77, 63–74.

    PubMed  CAS  Google Scholar 

  109. Ciruna, B., Jenny, A., Lee, D., (2006) Planar cell polarity signalling couples cell division and morphogenesis during neurula tion.Nature439, 220–224.

    PubMed  CAS  Google Scholar 

  110. Jenny, A., Darken, R. S., Wilson, P. A., (2003) Prickle and Strabismus form a func tional complex to generate a correct axis during planar cell polarity signaling.Embo J22, 4409–4420.

    PubMed  CAS  Google Scholar 

  111. Halloran, M. C., Sato-Maeda, M., Warren, J. T., (2000) Laser-induced gene expres sion in specific cells of transgenic zebrafish.Development127, 1953–1960.

    PubMed  CAS  Google Scholar 

  112. Ulrich, F., Krieg, M., Schotz, E. M., (2005) Wnt11 functions in gastrulation by control ling cell cohesion through Rab5c and E-cadherin.Dev Cell9, 555–564.

    PubMed  CAS  Google Scholar 

  113. Lewis, J. L., Bonner, J., Modrell, M., (2004) Reiterated Wnt signaling during zebrafish neural crest development.Development131, 1299–1308.

    PubMed  CAS  Google Scholar 

  114. Stoick-Cooper, C. L., Weidinger, G., Riehle, K. J., (2007) Distinct Wnt sig naling pathways have opposing roles in appendage regeneration.Development134, 479–489.

    PubMed  CAS  Google Scholar 

  115. Ueno, S., Weidinger, G., Osugi, T., (2007) Biphasic role for Wnt/beta-catenin signal ing in cardiac specification in zebrafish and embryonic stem cells.Proc Natl Acad Sci USA104, 9685–9690.

    PubMed  CAS  Google Scholar 

  116. Weidinger, G., Thorpe, C. J., Wuennen-berg-Stapleton, K., (2005) The Sp1-related transcription factors sp5 and sp5-like act downstream of Wnt/beta-catenin signaling in mesoderm and neuroectoderm pattern ing.Curr Biol15, 489–500.

    PubMed  CAS  Google Scholar 

  117. Dorsky, R. I., Sheldahl, L. C., Moon, R. T. (2002) A transgenic Lef1/beta-catenin-dependent reporter is expressed in spatially restricted domains throughout zebrafish development.Dev Biol241, 229–237.

    PubMed  CAS  Google Scholar 

  118. Eisen, J. S., Smith, J. C. (2008) Controlling morpholino experiments: don't stop making antisense.Development135, 1735–1743.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Pierre Smith, Department of Surgery, Royal Melbourne Hospital for photography and Andrew Badrock from the Heath laboratory for appearing in Fig. 19.1 and setting up the materials for the other figures.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hogan, B.M., Verkade, H., Lieschke, G.J., Heath, J.K. (2008). Manipulation of Gene Expression During Zebrafish Embryonic Development Using Transient Approaches. In: Vincan, E. (eds) Wnt Signaling. Methods in Molecular Biology, vol 469. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-469-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-469-2_19

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-468-5

  • Online ISBN: 978-1-60327-469-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics