Advertisement

The Nucleus pp 415-423 | Cite as

Electron Spectroscopic Imaging of the Nuclear Landscape

  • Kashif Ahmed
  • Ren Li
  • David P. Bazett-Jones
Part of the Methods in Molecular Biology book series (MIMB, volume 464)

Abstract

Our understanding of sub-nuclear organisation is largely based on fluorescence and electron microscopy methods. Conventional electron microscopy, which depends on heavy atom contrast agents, provides excellent contrast of condensed chromatin and some sub-nuclear structures such as the nucleolus. Unfortunately, other components, 10-nm chromatin fibres for example, do not contrast well. Electron spectroscopic imaging partially overcomes this limitation. In particular, phosphorus and nitrogen mapping provide sufficient contrast and resolution to visualise 10-nm chromatin fibres, while providing an opportunity to distinguish protein-based from nucleic acid-based supramolecular structures, such as the cores of nuclear bodies. Electron spectroscopic imaging, therefore, offers an approach to address many questions related to the functional organisation of the interior of the cell nucleus, which is illustrated in this chapter.

Keywords

Electron spectroscopic imaging Correlative microscopy Promyelocytic leukemia nuclear bodies Nucleus Chromatin Nuclear structure 

References

  1. 1.
    Cremer, T. and Cremer, C. (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2, 292-301PubMedCrossRefGoogle Scholar
  2. 2.
    Lamond, A.I. and Earnshaw, W.C. (1998) Structure and function in the nucleus. Science. 280, 547-553.PubMedCrossRefGoogle Scholar
  3. 3.
    Kruhlak, M. J., Lever, M. A., Fischle, W., Verdin, E., Bazett-Jones, D. P., and Hendzel, M. J. (2000) Reduced mobility of the alternate splicing factor (ASF) through the nucleoplasm and steady state speckle compartments. J. Cell. Biol. 150, 41-51.PubMedCrossRefGoogle Scholar
  4. 4.
    Olins, A. L. and Olins, D. E. (1974) Spheroid chromatin units (nu bodies). Science. 183, 330-332.PubMedCrossRefGoogle Scholar
  5. 5.
    Miller, O. L., Jr. and Beatty, B. R. (1969) Visualization of nucleolar genes. Science. 164, 955-957.PubMedCrossRefGoogle Scholar
  6. 6.
    Bazett-Jones, D. P. and Hendzel, M. J. (1999) Electron spectroscopic imaging of chromatin. Methods. 17, 188-200.PubMedCrossRefGoogle Scholar
  7. 7.
    Dehghani, H., Dellaire, G., and Bazett-Jones, D. P. (2005) Organization of chromatin in the interphase mammalian cell. Micron. 36, 95-108.PubMedCrossRefGoogle Scholar
  8. 8.
    Bolzer, A., Kreth, G., Solovei, I., Koehler, D., Saracoglu, K., Fauth, C., Muller, S., Eils, R., Cremer, C., Speicher, M. R., and Cremer, T. (2005) Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol. 3, e157.PubMedCrossRefGoogle Scholar
  9. 9.
    van Driel, R., Fransz, P. F., and Verschure, P. J. (2003) The eukaryotic genome: a system regulated at different hierarchical levels. J. Cell Sci. 116, 4067-4075.PubMedCrossRefGoogle Scholar
  10. 10.
    Dundr, M. and Misteli, T. (2001) Functional architecture in the cell nucleus. Biochem. J. 356, 297-310.PubMedCrossRefGoogle Scholar
  11. 11.
    Boyle, S., Gilchrist, S., Bridger, J. M., Mahy, N. L., Ellis, J. A., and Bickmore, W. A. (2001) The spatial organization of human chromosomes within the nuclei of normal and emerinmutant cells. Hum. Mol. Genet. 10, 211-219.PubMedCrossRefGoogle Scholar
  12. 12.
    Misteli, T. (2004) Spatial positioning: A new dimension in genome function. Cell. 119, 153-156.PubMedCrossRefGoogle Scholar
  13. 13.
    Osborne, C. S., Chakalova, L., Brown, K. E., Carter, D., Horton, A., Debrand, E., Goyenechea, B., Mitchell, J. A., Lopes, S., Reik, W., and Fraser, P. (2004) Active genes dynamically colocalize to shared sites of ongoing transcription. Nat. Genet. 36, 1065-1071.PubMedCrossRefGoogle Scholar
  14. 14.
    Chambeyron, S. and Bickmore, W. A. (2004) Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev. 18, 1119-1130.PubMedCrossRefGoogle Scholar
  15. 15.
    Borden, K. L. (2002) Pondering the promyelocytic leukemia protein (PML) puzzle: possible functions for PML nuclear bodies. Mol. Cell. Biol. 22, 5259-5269.PubMedCrossRefGoogle Scholar
  16. 16.
    Dellaire, G. and Bazett-Jones, D. P. (2004) PML nuclear bodies: Dynamic sensors of cellular stress and DNA damage. Bioessays. 26, 963-977.PubMedCrossRefGoogle Scholar
  17. 17.
    Eskiw, C. H., Dellaire, G., and Bazett-Jones, D. P. (2004) Chromatin contributes to structural integrity of promyelocytic leukemia bodies through a SUMO-1-independent mechanism. J. Biol. Chem. 279, 9577-9585.PubMedCrossRefGoogle Scholar
  18. 18.
    Block, G. J., Eskiw, C. H., Dellaire, G., and Bazett-Jones, D. P. (2006) Transcriptional regulation is affected by subnuclear targeting of reporter plasmids to PML nuclear bodies. Mol. Cell. Biol. 26, 8814-8825.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Kashif Ahmed
    • 1
  • Ren Li
    • 1
  • David P. Bazett-Jones
    • 1
  1. 1.Program in Genetics and Genome BiologyThe Hospital for Sick ChildrenTorontoCanada

Personalised recommendations