The Nucleus pp 403-413 | Cite as

Visualisation of RNA by Electron Microscopic In Situ Hybridisation

  • Jacques Rouquette
  • Karl-Henning Kalland
  • Stanislav Fakan
Part of the Methods in Molecular Biology book series (MIMB, volume 464)


Visualisation of RNA at an ultrastructural level represents a major approach to study organisation and function of the cell nucleus. In addition to methods allowing one to visualise a general distribution of RNA-containing structural constituents, in situ hybridisation (ISH) is a powerful tool for revealing specific RNA sequences or species. In this chapter we describe a method for detecting RNA by electron microscopic in situ hybridisation (EMISH) using anti-sense RNAs as probes. We first present the protocol for preparation of anti-sense RNA probes labeled with different markers, and then ossibility to evaluate the signal quantitatively. The method can also be combined with cytochemical techniques sucdescribe how such probes are applied to ultrathin sections by a method of ultrastructural ISH. The great advantage of this method is that it does not require denaturing either the specimen or the probe, thus allowing nuclear fine structure to be well preserved. The presence of the marker in the probe can be detected by immunoelectron microscopy using colloidal goldconjugated antibodies, offering the ph as EDTA staining for preferential visualisation of ribonucleoprotein-containing nuclear structural components.


Electron microscopic in situ hybridisation RNA probes Ultrastructural analysis EDTA staining 


  1. 1.
    Bernhard, W. (1969) A new staining procedure for electron microscopical cytology J. Ultrastruct. Res. 27, 250-265PubMedCrossRefGoogle Scholar
  2. 2.
    Fakan, S. and Bernhard, W. (1971) Localisation of rapidly and slowly labelled nuclear RNA as visualized by high resolution autoradiography. Exp. Cell. Res. 67, 129-141PubMedCrossRefGoogle Scholar
  3. 3.
    Nash, R. E., Puvion, E., and Bernhard, W. (1975) Perichromatin fibrils as components of rapidly labeled extranucleolar RNA. J. Ultrastruct. Res. 53, 395-405PubMedCrossRefGoogle Scholar
  4. 4.
    Fakan, S., Puvion, E., and Spohr, G. (1976) Localization and characterization of newly synthesized nuclear RNA in isolate rat hepatocytes. Exp. Cell Res. 99, 155-164PubMedCrossRefGoogle Scholar
  5. 5.
    Fakan, S., Leser, G., and Martin, T. E. (1984) Ultrastructural distribution of nuclear ribonucleo proteins as visualized by immunocytochemistry on thin sections. J. Cell Biol. 98, 358-163PubMedCrossRefGoogle Scholar
  6. 6.
    Biggiogera, M. and Fakan, S. (1998) Fine structural specific visualization of RNA on ultrathin sections. J. Histochem. Cytochem. 46, 389-395PubMedCrossRefGoogle Scholar
  7. 7.
    Gall, J. G. and Pardue, M. L. (1969) Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc. Natl. Acad. Sci. U S A. 63, 378-383PubMedCrossRefGoogle Scholar
  8. 8.
    Morel, G. (1993) Hybridization techniques for electron microscopy. CRC Press. 22 EM In Situ Hybridisation to Visualise RNA 4138. Morel, G. (1993) Hybridization techniques for electron microscopy. CRC Press. 22 EM In Situ Hybridisation to Visualise RNA 413Google Scholar
  9. 9.
    Puvion-Dutilleul, F. and Puvion, E. (1996) Non-isotopic electron microscope in situ hybridi zation for studying the functional sub-compartmentalization of the cell nucleus. Histochem. Cell Biol. 106, 59-78PubMedCrossRefGoogle Scholar
  10. 10.
    Cmarko, D. and Koberna, K. (2007) Electron microscopy in situ hybridization. In: Electron microscopy: Methods and protocols (Kuo, J., Ed.), Humana, Totowa, NJ, pp. 213-228CrossRefGoogle Scholar
  11. 11.
    Carlemalm, E., Garavito, R. M., and Villiger, W. (1982) Resin development for electron microscopy and an analysis of embedding at low temperature. J. Microsc. 126, 123-143CrossRefGoogle Scholar
  12. 12.
    Fischer, D., Weisenberger, D., and Scheer. U. (1996) In situ hybridization of DIG-labeled rRNA probes to mouse liver ultrathin sections. In: Nonradioactive in situ hybridization. Application manual, 2nd ed. Boehringer, Mannheim, Germany, pp. 148-151Google Scholar
  13. 13.
    Cmarko, D., Boe, S. O., Scassellati, C., Szilvay, A. M., Davanger, S., Fu, X. D., Haukenes, G., Kalland, K. H., and Fakan, S. (2002) Rev inhibition strongly affects intracellular distribution of human immunodeficiency virus type 1 RNAs. J. Virol. 76, 10473-10484PubMedCrossRefGoogle Scholar
  14. 14.
    Reynolds, E. S. (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208-212PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Jacques Rouquette
    • 1
  • Karl-Henning Kalland
    • 2
  • Stanislav Fakan
    • 1
  1. 1.Centre of Electron MicroscopyUniversity of LausanneLausanneSwitzerland
  2. 2.Centre for Research in VirologyUniversity of Bergen, The Gade InstituteBergenNorway

Personalised recommendations