The Nucleus pp 321-341 | Cite as

Fluorescence Correlation Spectroscopy to Assess the Mobility of Nuclear Proteins

  • Stefanie Weidtkamp-Peters
  • Klaus Weisshart
  • Lars Schmiedeberg
  • Peter Hemmerich
Part of the Methods in Molecular Biology book series (MIMB, volume 464)


Recent developments in cell biology and microscopy techniques enable us to observe macromolecular assemblies in their natural setting: the living cell. These emerging technologies have revealed novel concepts in nuclear cell biology. In order to further elucidate the biochemistry of gene expression, replication, and genome maintenance, the major challenge is now to precisely determine the dynamics of nuclear proteins in the context of the structural organization of the nucleus. Fluorescence correlation spectroscopy (FCS) is an attractive alternative to photobleaching and photoactivation techniques for the analysis of protein dynamics at single-molecule resolution. Here we describe how FCS can be applied to retrieve biophysical parameters of nuclear proteins in living cells.


Cell nucleus Obstructed diffusion Kinetic microscopy Living cell Diffusion coefficient Enhanced green fluorescent protein Bleaching 


  1. 1.
    Hemmerich, P. and Diekmann S. (eds.) (2005) Visions of the cell nucleus. American Scientific Publishers, CA, USAGoogle Scholar
  2. 2.
    Misteli, T. (2001) Protein dynamics: implications for nuclear architecture and gene expression. Science. 291, 843-847PubMedCrossRefGoogle Scholar
  3. 3.
    von Mikecz, A. and Hemmerich, P. (2005) Subnuclear pathology. In: Visions of the cell nucleus (Diekamnn, S. and Hemmerich, P. eds.), American Scientific Publishers, CA, USA, pp. 184-203Google Scholar
  4. 4.
    Magde, D. Elson, E. and Webb, W.W. (1972) Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett. 29, 705-708CrossRefGoogle Scholar
  5. 5.
    Widengren, J. and Mets, Ü. (2002) Conceptual basis of fluorescence correlation spectroscopy and related techniques as tools in bioscience. In: Single-molecule detection in solution—methods and applications (Zander, C., Enderlein, J., and Keller, R. A., eds.) Wiley-VCH, BerlinGoogle Scholar
  6. 6.
    Rigler, R. and Widengren, J. (1990) Ultrasensitive detection of single molecules by fluorescence correlation spectroscopy. Biosciences. 3, 180-183Google Scholar
  7. 7.
    Enderlein, J., Gregor, I., Patra, D., and Fitter, J. (2004) Art and artefacts of fluorescence correlation spectroscopy. Curr. Pharm. Biotechnol. 2, 155-161CrossRefGoogle Scholar
  8. 8.
    Bacia, K. and Schwille, P. (2003) A dynamic view of cellular processes by in vivo fluorescence auto- and cross correlation spectroscopy. Methods. 29, 74-85PubMedCrossRefGoogle Scholar
  9. 9.
    Schmiedeberg, L., Weisshart, K., Diekmann, S., Meyer Zu Hoerste, G., and Hemmerich, P. (2004) High and low mobility populations of HP1 in heterochromatin of mammalian cells. Mol. Biol. Cell. 15, 2819-2833PubMedCrossRefGoogle Scholar
  10. 10.
    Schwille, P., Meyer-Almes, F.-R., and Rigler, R. (1997) Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional behaviour in solution. Biophys. J. 72, 1878-1886PubMedCrossRefGoogle Scholar
  11. 11.
    Wachsmuth, M., Weidemann, T., Muller, G., Hoffmann-Rohrer, U.W., Knoch, T.A., Waldeck, W., and Langowski, J. (2003) Analyzing intracellular binding and diffusion with continuous fluorescence photobleaching. Biophys. J. 84, 3353-3363PubMedCrossRefGoogle Scholar
  12. 12.
    Chen, Y., Müller, J.D., Ruan, Q., and Gratton, E. (2002) Molecular brightness characterization of EGFP in vivo by fluorescence fluctuation spectroscopy. Biophys. J. 82, 133-144PubMedCrossRefGoogle Scholar
  13. 13.
    Jankowski, T. and Janka, R. (2001) in Fluorescence correlation spectroscopy: theory and applications (Rigler, R., and Elson, E. L., Eds.), Vol. 65, Springer, Berlin Heidelberg. pp. 331-345CrossRefGoogle Scholar
  14. 14.
    Weisshart, K., Jungel, V., and Briddon, S.J. (2004) The LSM 510 META - ConfoCor 2 system: an integrated imaging and spectroscopic platform for single-molecule detection. Curr. Pharm. Biotechnol. 2, 135-154CrossRefGoogle Scholar
  15. 15.
    Magde, D., Elson, E.L., and Webb, W.W. (1974) Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers. 1, 29-61CrossRefGoogle Scholar
  16. 16.
    Meseth, U., Wohland, T., Rigler, R., and Vogel, H. (1999) Resolution of fluorescence correlation measurements. Biophys. J. 3, 1619-1631CrossRefGoogle Scholar
  17. 17.
    Haustein, E. and Schwille, P. (2003) Ultrasensitive investigations of biological systems by fluorescence correlation spectroscopy. Methods. 2, 153-156CrossRefGoogle Scholar
  18. 18.
    Muller, J.D., Chen, Y., and Gratton, E. (2003) Fluorescence correlation spectroscopy. Methods Enzymol. 361, 69-92PubMedCrossRefGoogle Scholar
  19. 19.
    Hink, M.A., Borst, J.W., and Visser, A.J. (2003) Fluorescence correlation spectroscopy of GFP fusion proteins in living plant cells. Methods Enzymol. 361, 93-112PubMedCrossRefGoogle Scholar
  20. 20.
    Skakun, V.V., Hink, M.A., Digris, A.V., Engel, R., Novikov, E.G., Apanasovich, V.V., and Visser, A. J. (2005) Global analysis of fluorescence fluctuation data. Eur. Biophys J. 4, 323334. (Erratum in Eur. Biophys. J. (2005) 7, 972)Google Scholar

Copyright information

© Humana Press, a part of Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Stefanie Weidtkamp-Peters
    • 1
  • Klaus Weisshart
    • 2
  • Lars Schmiedeberg
    • 3
  • Peter Hemmerich
    • 1
  1. 1.Leibniz Institute for Age ResearchFritz Lipmann InstituteJenaGermany
  2. 2.Carl Zeiss JenaJenaGermany
  3. 3.Wellcome Trust Center for Cell Biology, Institute of Cell and Molecular BiologyUniversity of EdinburghEdinburghScotland, UK

Personalised recommendations