The Nucleus pp 303-317 | Cite as

Quantification of Redox Conditions in the Nucleus

  • Young-Mi Go
  • Jan Pohl
  • Dean P. Jones
Part of the Methods in Molecular Biology book series (MIMB, volume 464)


Many nuclear proteins contain thiols, which undergo reversible oxidation and are critical for normal function. These proteins include enzymes, transport machinery, structural proteins, and transcription factors with conserved cysteine in zinc fingers and DNA-binding domains. Uncontrolled oxidation of these thiols causes dysfunction, and two major thiol-dependent antioxidant systems provided protection. The redox states of these systems, including the small redox active protein thioredoxin-1 (Trx1) and the abundant, low molecular weight thiol antioxidant glutathione (GSH), in nuclei provide means to quantify nuclear redox conditions. Redox measurements are obtained under conditions with excess thiol-reactive reagents. Here we describe a suite of methods to measure nuclear redox state, which include a redox Western blot technique to quantify the redox state of Trx l, a biotinylated iodoacetamide (BIAM) method for thioredoxin reductase-1 (TrxR1), GSH redox measurement using total protein S-glutathionylation, and a redox isotope-coded affinity tag (ICAT) method for measuring oxidation of specific cysteines in high-abundance nuclear proteins.


Nuclear redox state Thioredoxin-1 Thioredoxin reductase Glutathione Protein S-glutathionylation Nuclear proteins Redox Western blot Biotinylated iodoacetamide (BIAM) Isotope-coded affinity tags (ICAT) analysis 


  1. 1.
    Jones, D.P. (2006) Redefining oxidative stress. Antioxid. Redox Signal. 8, 1865-1879.PubMedCrossRefGoogle Scholar
  2. 2.
    Hansen, J.M., Go, Y.M., and Jones, D.P. (2006) Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling. Annu. Rev. Pharmacol. Toxicol. 46, 215-234.PubMedCrossRefGoogle Scholar
  3. 3.
    Dijkwel, P.A. and Wenink, P.W. (1986) Structural integrity of the nuclear matrix: differential effects of thiol agents and metal chelators. J. Cell Sci. 84, 53-67.PubMedGoogle Scholar
  4. 4.
    Klug, A. and Rhodes, D. (1987) Zinc fingers: a novel protein fold for nucleic acid recognition. Cold Spring Harb. Symp. Quant. Biol. 52, 473-482.PubMedCrossRefGoogle Scholar
  5. 5.
    De Capoa, A., Ferraro, M., Lavia, P., Pelliccia, F., and Finazzi-Agro, A. (1982) Silver staining of the nucleolus organizer regions (NOR) requires clusters of sulfhydryl groups. J Histochem. Cytochem. 30, 908-911.PubMedCrossRefGoogle Scholar
  6. 6.
    Suthanthiran, M., Anderson, M.E., Sharma, V.K., and Meister, A. (1990) Glutathione regulates activation-dependent DNA synthesis in highly purified normal human T lymphocytes stimulated via the CD2 and CD3 antigens. Proc. Natl. Acad. Sci. USA 87, 3343-3347.PubMedCrossRefGoogle Scholar
  7. 7.
    Sandstrom, B.E. and Marklund, S.L. (1990) Effects of variation in glutathione peroxidase activity on DNA damage and cell survival in human cells exposed to hydrogen peroxide and t-butyl hydroperoxide. Biochem. J. 271, 17-23.PubMedGoogle Scholar
  8. 8.
    Sen, C.K. and Packer, L. (1996) Antioxidant and redox regulation of gene transcription. FASEB J. 10, 709-720.PubMedGoogle Scholar
  9. 9.
    Hirota, K., Murata, M., Sachi, Y., Nakamura, H., Takeuchi, J., Mori, K., and Yodoi, J. (1999) Distinct roles of thioredoxin in the cytoplasm and in the nucleus. A two-step mechanism of redox regulation of transcription factor NF-kappaB. J. Biol. Chem. 274, 27891-27897.PubMedCrossRefGoogle Scholar
  10. 10.
    Wei, S.J., Botero, A., Hirota, K., Bradbury, C.M., Markovina, S., Laszlo, A., Spitz, D.R., Goswami, P.C., Yodoi, J., and Gius, D. (2000) Thioredoxin nuclear translocation and interaction with redox factor-1 activates the activator protein-1 transcription factor in response to ionizing radiation. Cancer Res. 60, 6688-6695.PubMedGoogle Scholar
  11. 11.
    Bellomo, G., Vairetti, M., Stivala, L., Mirabelli, F., Richelmi, P., and Orrenius, S. (1992) Demonstration of nuclear compartmentalization of glutathione in hepatocytes. Proc. Natl. Acad. Sci. USA 89, 4412-4416.PubMedCrossRefGoogle Scholar
  12. 12.
    Briviba, K., Fraser, G., Sies, H., and Ketterer, B. (1993) Distribution of the monochlorobimane-glutathione conjugate between nucleus and cytosol in isolated hepatocytes. Biochem. J. 294, 631-633.PubMedGoogle Scholar
  13. 13.
    Cotgreave, I.A. (2003) Analytical developments in the assay of intra- and extracellular GSH homeostasis: specific protein S-glutathionylation, cellular GSH and mixed disulphide compartmentalisation and interstitial GSH redox balance. Biofactors 17, 269-277.PubMedCrossRefGoogle Scholar
  14. 14.
    Holmgren, A. and Fagerstedt, M. (1982) The in vivo distribution of oxidized and reduced thioredoxin in Escherichia coli. J. Biol. Chem. 257, 6926-6930.PubMedGoogle Scholar
  15. 15.
    Watson, W.H., Pohl, J., Montfort, W.R., Stuchlik, O., Reed, M.S., Powis, G., and Jones, D.P. (2003) Redox potential of human thioredoxin 1 and identification of a second dithiol/disulfide motif. J. Biol. Chem. 278, 33408-33415.PubMedCrossRefGoogle Scholar
  16. 16.
    Janssen, Y.M. and Sen, C.K. (1999) Nuclear factor kappa B activity in response to oxidants and antioxidants. Methods Enzymol. 300, 363-374.PubMedCrossRefGoogle Scholar
  17. 17.
    Padgett, C.M. and Whorton, A.R. (1995) S-nitrosoglutathione reversibly inhibits GAPDH by S-nitrosylation. Am. J. Physiol. 269, C739-749.PubMedGoogle Scholar
  18. 18.
    Stadtman, T.C. (2002) Discoveries of vitamin B12 and selenium enzymes. Annu. Rev. Biochem. 71, 1-16.PubMedCrossRefGoogle Scholar
  19. 19.
    Gasdaska, P.Y., Gasdaska, J.R., Cochran, S., and Powis, G. (1995) Cloning and sequencing of a human thioredoxin reductase. FEBS Lett. 373, 5-9.PubMedCrossRefGoogle Scholar
  20. 20.
    Mustacich, D. and Powis, G. (2000) Thioredoxin reductase. Biochem. J. 346, 1-8.PubMedCrossRefGoogle Scholar
  21. 21.
    Soini, Y., Kahlos, K., Napankangas, U., Kaarteenaho-Wiik, R., Saily, M., Koistinen, P., Paaakko, P., Holmgren, A., and Kinnula, V.L. (2001) Widespread expression of thioredoxin and thioredoxin reductase in non-small cell lung carcinoma. Clin. Cancer Res. 7, 1750-1757.PubMedGoogle Scholar
  22. 22.
    Kim, J.R., Lee, S.M., Cho, S.H., Kim, J.H., Kim, B.H., Kwon, J., Choi, C.Y., Kim, Y.D., and Lee, S.R. (2004) Oxidation of thioredoxin reductase in HeLa cells stimulated with tumor necrosis factor-alpha. FEBS Lett. 567, 189-196.PubMedCrossRefGoogle Scholar
  23. 23.
    Brigelius, R., Lenzen, R., and Sies, H. (1982) Increase in hepatic mixed disulphide and glutathione disulphide levels elicited by paraquat. Biochem. Pharmacol. 31, 1637-1641.PubMedCrossRefGoogle Scholar
  24. 24.
    Brigelius, R., Muckel, C., Akerboom, T.P., and Sies, H. (1983) Identification and quantitation of glutathione in hepatic protein mixed disulfides and its relationship to glutathione disulfide. Biochem. Pharmacol. 32, 2529-2534.PubMedCrossRefGoogle Scholar
  25. 25.
    Lash, L.H. and Jones, D.P. (1985) Distribution of oxidized and reduced forms of glutathione and cysteine in rat plasma. Arch. Biochem. Biophys. 240, 583-592.PubMedCrossRefGoogle Scholar
  26. 26.
    Go, Y.M., Ziegler, T.R., Johnson, J.M., Gu, L., Hansen, J.M., and Jones, D.P. (2007) Selective protection of nuclear thioredoxin-1 and glutathione redox systems against oxidation during glucose and glutamine deficiency in human colonic epithelial cells. Free Radic. Biol. Med. 42, 363-370.PubMedCrossRefGoogle Scholar
  27. 27.
    Sethuraman, M., McComb, M.E., Huang, H., Huang, S., Heibeck, T., Costello, C.E., and Cohen, R.A. (2004) Isotope-coded affinity tag (ICAT) approach to redox proteomics: identification and quantitation of oxidant-sensitive cysteine thiols in complex protein mixtures. J. Proteome Res. 3, 1228-1233.PubMedCrossRefGoogle Scholar
  28. 28.
    Halvey, P.J., Watson, W.H., Hansen, J.M., Go, Y.M., Samali, A., and Jones, D.P. (2005) Compartmental oxidation of thiol-disulphide redox couples during epidermal growth factor signalling. Biochem. J. 386, 215-219.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Young-Mi Go
    • 1
  • Jan Pohl
    • 2
  • Dean P. Jones
    • 3
  1. 1.Department of MedicineEmory UniversityAtlantaUSA
  2. 2.Microchemical and Proteomics Facility, Department of MedicineEmory UniversityAtlantaUSA
  3. 3.Program in Genetics and Genome BiologyThe Hospital for Sick ChildrenTorontoCanada

Personalised recommendations