The Nucleus pp 285-302 | Cite as

Purification and Analysis of Variant and Modified Histones Using 2D PAGE

  • George R. Green
  • Duc P. Do
Part of the Methods in Molecular Biology book series (MIMB, volume 464)


Two-dimensional (2D) polyacrylamide gel electrophoresis (PAGE) systems employing combinations of acetic acid/urea (AU), acetic acid/urea/Triton X-100 (AUT) and sodium dodecyl sulfate (SDS) gel formulations are uniquely effective for resolution of histone variants and their modified derivatives. Coupled with Western transfer methods using modification-specific antibodies and recent advances in mass spectrometry, 2D PAGE emerges as a versatile tool for histone purification and analysis. This chapter describes 2D PAGE gel systems appropriate for histone proteins, including detailed procedures for designing, running, and staining gels. Methods for electrophoretic transfer of histones from AUT×SDS and AUT×AU 2D gels are described and evaluated. Alternatively, methods are provided for obtaining highly purified protein samples from fixed and stained gels via electroelution of proteins from specific gel spots.


Histone variants Histone modification Phosphorylation Acetylation Ubiquitylation Two-dimensional polyacrylamidegelelectrophoresis Electroelution Western analysis Triton X-100 SDS-PAGE 



We thank Eric Selker, Kristina Smith, and Keyur Adhvaryu for providing Neurospora strains and assistance with isolating nuclei and histones from this species.


  1. 1.
    Ausio, J. (2006). Histone variants–the structure behind the function. Brief. Funct. Genomics Proteomics 5, 228-243CrossRefGoogle Scholar
  2. 2.
    Hake, S.B. and C.D. Allis (2006). Histone H3 variants and their potential role in indexing mam malian genomes: The “H3 barcode hypothesis.” Proc. Natl. Acad. Sci. USA 103, 6428-6435PubMedCrossRefGoogle Scholar
  3. 3.
    Kamakaka, R.T. and S. Biggins (2005). Histone variants: Deviants? Genes Dev. 19, 295-316PubMedCrossRefGoogle Scholar
  4. 4.
    Pusarla, R.H. and P. Bhargava (2005). Histones in functional diversification: Core histone variants. FEBS J. 272, 5149-5168PubMedCrossRefGoogle Scholar
  5. 5.
    Mizzen, C.A. (2004). Purification and analyses of histone H1 variants and H1 posttranslational modifications. Methods Enzymol. 375, 278-297PubMedCrossRefGoogle Scholar
  6. 6.
    Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128, 693-705PubMedCrossRefGoogle Scholar
  7. 7.
    Mersfelder, E.L. and M.R. Parthun (2006). The tale beyond the tail: Histone core domain modifications and the regulation of chromatin structure. Nucleic Acids Res. 34, 2653-2662PubMedCrossRefGoogle Scholar
  8. 8.
    Henikoff, S. (2005). Histone modifications: Combinatorial complexity or cumulative simplicity? Proc. Natl. Acad. Sci. USA 102, 5308-5309PubMedCrossRefGoogle Scholar
  9. 9.
    Green, G.R. (2001). Phosphorylation of histone variant regions in chromatin: Unlocking the linker? Biochem. Cell Biol. 79, 275-287Google Scholar
  10. 10.
    Zweidler, A. (1978). Resolution of histones by polyacrylamide gel electrophoresis in presence of nonionic detergents. Methods Cell Biol. 17, 223-333PubMedCrossRefGoogle Scholar
  11. 11.
    Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685PubMedCrossRefGoogle Scholar
  12. 12.
    Panyim, S. and R. Chalkley (1971). The molecular weights of vertebrate histones exploiting a modified sodium dodecyl sulfate electrophoretic method. J. Biol. Chem. 246, 7557-7560PubMedGoogle Scholar
  13. 13.
    Reisfeld, R.A., U.J. Lewis, and D.E. Williams (1962). Disk electrophoresis of basic proteins and peptides on polyacrylamide gels. Nature 195, 281-283PubMedCrossRefGoogle Scholar
  14. 14.
    Panyim, S. and R. Chalkley (1969). High resolution acrylamide gel electrophoresis of histones. Arch. Biochem. Biophys. 130, 337-346PubMedCrossRefGoogle Scholar
  15. 15.
    Savic, A. and D. Poccia (1978). Separation of histones from contaminating ribosomal proteins by two-dimensional gel electrophoresis. Anal. Biochem. 88, 573-579PubMedCrossRefGoogle Scholar
  16. 16.
    Poccia, D., J. Salik, and G. Krystal (1981). Transitions in histone variants of the male pronucleus following fertilization and evidence for a maternal store of cleavage-stage histones in the sea urchin egg. Dev. Biol. 82, 287-296PubMedCrossRefGoogle Scholar
  17. 17.
    Salik, J., L. Herlands, H.P. Hoffmann, and D. Poccia (1981). Electrophoretic analysis of the stored histone pool in unfertilized sea urchin eggs: Quantification and identification by antibody binding. J. Cell Biol. 90, 385-395PubMedCrossRefGoogle Scholar
  18. 18.
    Poccia, D., T. Greenough, G.R. Green, E. Nash, J. Erickson, and M. Gibbs (1984). Remodeling of sperm chromatin following fertilization: Nucleosome repeat length and histone variant transitions in the absence of DNA synthesis. Dev. Biol. 104, 274-286PubMedCrossRefGoogle Scholar
  19. 19.
    Green, G.R. and D.L. Poccia (1985). Phosphorylation of sea urchin sperm H1 and H2B histones precedes chromatin decondensation and H1 exchange during pronuclear formation. Dev. Biol. 108, 235-245PubMedCrossRefGoogle Scholar
  20. 20.
    Poccia, D.L, M.V. Simpson, and G.R. Green (1987). Transitions in histone variants during sea urchin spermatogenesis. Dev. Biol. 121, 445-453PubMedCrossRefGoogle Scholar
  21. 21.
    Green, G.R. and D.L. Poccia (1988). Interaction of sperm histone variants and linker DNA during spermiogenesis in the sea urchin. Biochemistry 27, 619-625PubMedCrossRefGoogle Scholar
  22. 22.
    Green, G.R. and D.L. Poccia (1989). Phosphorylation of sea urchin histone CS H2A. Dev. Biol. 134, 413-419PubMedCrossRefGoogle Scholar
  23. 23.
    Vodicka, M., G.R. Green, and D.L. Poccia (1990). Sperm histones and chromatin structure of the “primitive” sea urchin Eucidaris tribuloides. J. Exp. Zool. 256, 179-188PubMedCrossRefGoogle Scholar
  24. 24.
    Poccia, D., W. Pavan, and G.R. Green (1990). 6DMAP inhibits chromatin decondensation but not sperm histone kinase in sea urchin male pronuclei. Exp. Cell Res. 188, 226-234PubMedCrossRefGoogle Scholar
  25. 25.
    Green, G.R., L.C. Gustavsen, and D.L. Poccia (1990). Phosphorylation of plant H2A histones. Plant Phys. 93, 1241-1245CrossRefGoogle Scholar
  26. 26.
    Green, G.R., J.C. Patel, N.B. Hecht, and D.L. Poccia (1991). A complex pattern of H2A phosphorylation in the mouse testis. Exp. Cell Res. 195, 8-12PubMedCrossRefGoogle Scholar
  27. 27.
    Green, G.R., R.R. Ferlita, W.F. Walkenhorst, and D.L. Poccia (2001). Linker DNA destabilizes condensed chromatin. Biochem. Cell Biol. 79, 349-363PubMedCrossRefGoogle Scholar
  28. 28.
    Wyatt, H.R., H. Liaw, G.R. Green, and A.J. Lustig (2003). Multiple roles for Saccharomyces cerevisiae histone H2A in telomere position effect, Spt phenotypes and double-strand-break repair. Genetics 164, 47-64PubMedGoogle Scholar
  29. 29.
    Cleveland, D.W., S. G. Fischer, M. W. Kirschner, and U. K. Laemmli (1977). Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J. Biol. Chem. 252, 1102-1106PubMedGoogle Scholar
  30. 30.
    Green, G.R., D. Poccia, and L. Herlands (1982). A multisample device for electroelution, concentration, and dialysis of proteins from fixed and stained gel slices. Anal. Biochem. 123, 66-73PubMedCrossRefGoogle Scholar
  31. 31.
    Green, G.R., D.G. Searcy, and R.J. DeLange (1983). Histone-like protein in the archaebacterium Sulfolobus acidocaldarius. Biochim. Biophys. Acta 741, 251-257PubMedCrossRefGoogle Scholar
  32. 32.
    Waterborg, J.H. and R.E. Harrington (1987). Western blotting of histones from acid-ureaTriton and sodium dodecyl sulfate-polyacrylamide gels. Anal. Biochem. 162, 430-434PubMedCrossRefGoogle Scholar
  33. 33.
    Delcuve, G.P. and J.R. Davie (1992). Western blotting and immunochemical detection of histones electrophoretically resolved on acid-urea-triton and sodium dodecyl sulfate-polyacrylamide gels. Anal. Biochem. 200, 339-341PubMedCrossRefGoogle Scholar
  34. 34.
    Thiriet, C. and P. Albert (1995). Rapid and effective Western blotting of histones from acid-ureaTriton and sodium dodecyl sulfate polyacrylamide gels: Two different approaches depending on the subsequent qualitative or quantitative analysis. Electrophoresis 16, 357-361PubMedCrossRefGoogle Scholar
  35. 35.
    Albert, P. and C. Redon (1998). Efficient antibody generation using histone H1 subfractions purified from Western blots. Anal. Biochem. 261, 87-92PubMedCrossRefGoogle Scholar
  36. 36.
    Gorg, A., W. Weiss, and M.J. Dunn (2004). Current two-dimensional electrophoresis technology for proteomics. Proteomics 4, 3665-3685PubMedCrossRefGoogle Scholar
  37. 37.
    Goshe, M. B. (2006). Characterizing phosphoproteins and phosphoproteomes using mass spectrometry. Brief. Funct. Genomics Proteomics 4, 363-376CrossRefGoogle Scholar
  38. 38.
    Domon, B. and R. Aebersold (2006). Mass spectrometry and protein analysis. Science 312, 212-217PubMedCrossRefGoogle Scholar
  39. 39.
    Wittmann-Liebold, B., H.R. Graack, and T. Pohl (2006). Two-dimensional gel electrophoresis as tool for proteomics studies in combination with protein identification by mass spectrometry. Proteomics 6, 4688-4703PubMedCrossRefGoogle Scholar
  40. 40.
    Garcia, B.A., J. Shabanowitz, and D.F. Hunt (2007). Characterization of histones and their post-translational modifications by mass spectrometry. Curr. Opin. Chem. Biol. 11, 66-73PubMedCrossRefGoogle Scholar
  41. 41.
    Garcia, B.A., S.B. Hake, R.L. Diaz, M. Kauer, S. A. Morris, J. Recht, J. Shabanowitz, N. Mishra, B. D. Strahl, C. D. Allis, and D. F. Hunt (2007). Organismal differences in post-translational modifications in histones H3 and H4. J. Biol. Chem. 282, 7641-7655PubMedCrossRefGoogle Scholar
  42. 42.
    Wisniewski, J.R., A. Zougman, S. Krüger, and M. Mann (2007). Mass spectrometric mapping of linker histone H1 variants reveals multiple acetylations, methylations, and phosphorylation as well as differences between cell culture and tissue. Mol. Cell. Proteomics 6, 72-87PubMedGoogle Scholar
  43. 43.
    Bonenfant, D., M. Coulot, H. Towbin, P. Schindler, and J. Oostrum (2006). Characterization of histone H2A and H2B variants and their post-translational modifications by mass spectrometry. Mol. Cell. Proteomics 5, 541-552PubMedGoogle Scholar
  44. 44.
    Beck, H.C., E.C. Nielsen, R. Matthiesen, L.H. Jensen, M. Sehested, P. Finn, M. Grauslund, A.M. Hansen, and O.N. Jensen (2006). Quantitative proteomic analysis of post-translational modifications of human histones. Mol. Cell. Proteomics 5, 1314-1325PubMedCrossRefGoogle Scholar
  45. 45.
    Boyne, M.T., J.J. Pesavento, C.A. Mizzen, and N.L. Kelleher (2006). Precise characterization of human histones in the H2A gene family by top down mass spectrometry. Proteome Res. 5, 248-253CrossRefGoogle Scholar
  46. 46.
    Burlingame, A.L., X. Zhang, and R.J. Chalkley (2005). Mass spectrometric analysis of histone posttranslational modifications. Methods 36, 383-394PubMedCrossRefGoogle Scholar
  47. 47.
    Poccia, D.L. and G.R. Green (1986). Nuclei and chromosomal proteins. Methods Cell Biol. 27, 153-174PubMedCrossRefGoogle Scholar
  48. 48.
    Henderson, L.E., S. Oroszlan, and W. Konigsberg (1979). A micromethod for complete removal of dodecyl sulfate from proteins by ion-pair extraction. Anal. Biochem. 93, 153-157PubMedCrossRefGoogle Scholar
  49. 49.
    Baum, J.A. and N.H. Giles (1985). Genetic control of chromatin structure 5? to the qa-x and qa-2 genes of Neurospora. J. Mol. Biol. 182, 79-89PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • George R. Green
    • 1
  • Duc P. Do
    • 1
  1. 1.Department of Pharmaceutical SciencesMercer University College of Pharmacy and Health SciencesAtlantaUSA

Personalised recommendations