Advertisement

The Nucleus pp 227-254 | Cite as

Detection and Analysis of (O-linked β-N-Acetylglucosamine)-Modified Proteins

  • Natasha E. Zachara
Part of the Methods in Molecular Biology book series (MIMB, volume 464)

Abstract

Glycosylation is one of the most common and complex forms of posttranslational modifications of proteins in eukaryotes. Seven different protein-carbohydrate linkages have been characterized on nuclear and cytoplasmic glycoproteins, the most widespread of which is the modification of Ser/Thr residues with monosaccharides of O-linked β-N-acetylglucosamine (O-GlcNAc). O-GlcNAc modification is concentrated in nuclear proteins. O-GlcNAc is thought to regulate protein function in a manner analogous to phosphorylation; and is implicated in the regulation of transcription, the proteasome, insulin and MAP kinase signaling, the cell cycle, and the cellular stress response. In this chapter we focus on methods for the detection of O-GlcNAc-modified proteins and discuss general techniques for the detection and subsequent analysis of other protein-carbohydrate conjugates.

Keywords

Protein glycosylation O-GlcNAc Signal transduction Posttranslational modification Affinity purification Glycomics Site-mapping Mass spectrometry 

Notes

Acknowledgments

The author acknowledges Prof. Gerald W. Hart (Johns Hopkins University School of Medicine) for comments on this manuscript, and the technical help of Katie Zoey Ho (Johns Hopkins Singapore). NEZ was supported by an A*Star Research grant to Johns Hopkins Singapore.

References

  1. 1.
    Hart, G. W., Haltiwanger, R. S., Holt, G. D., and Kelly, W. G. (1989) Glycosylation in the nucleus and cytoplasm. Annu. Rev. Biochem. 58, 841-874.PubMedCrossRefGoogle Scholar
  2. 2.
    Lomako, J., Lomako, W. M., and Whelan, W. J. (2004) Glycogenin: the primer for mammalian and yeast glycogen synthesis. Biochim. Biophys. Acta. 1673, 45-55.PubMedCrossRefGoogle Scholar
  3. 3.
    Marchase, R, B., Bounelis, P., Brumley, L. M., Dey N., Browne, B., Auger, D., Fritz, T. A., Kulesza, P., and Bedwell, D. M. (1993) Phosphoglucomutase in Saccharomyces cerevisiae is a cytoplasmic glycoprotein and the acceptor for a Glc-phosphotransferase. J. Biol. Chem. 268, 8341-8349.PubMedGoogle Scholar
  4. 4.
    Dey, N. B., Bounelis, P., Fritz, T. A., Bedwell, D. M., and Marchase, R. B. (1994) The glycosylation of phosphoglucomutase is modulated by carbon source and heat shock in Saccharomyces cerevisiae. J. Biol. Chem. 269, 27143-27148.PubMedGoogle Scholar
  5. 5.
    Veyna, N. A., Jay, J. C., Srisomsap, C., Bounelis, P., and Marchase, R. B. (1994) The addition of glucose-1-phosphate to the cytoplasmic glycoprotein phosphoglucomutase is modulated by intracellular calcium in PC12 cells and rat cortical synaptosomes. J. Neurochem. 62, 456-464.PubMedCrossRefGoogle Scholar
  6. 6.
    Schirmer, J. and Aktories, K. (2004) Large clostridial cytotoxins: cellular biology of Rho/Rasglucosylating toxins. Biochim. Biophys. Acta. 1673, 66-74.PubMedCrossRefGoogle Scholar
  7. 7.
    West, C. M., Van Der Wel, H., Sassi, S., and Gaucher, E. A. (2004) Cytoplasmic glycosylation of protein-hydroxyproline and its relationship to other glycosylation pathways. Biochim. Biophys. Acta. 1673, 29-44.PubMedCrossRefGoogle Scholar
  8. 8.
    Zachara, N. E. and Hart, G. W. (2004) O-GlcNAc a sensor of cellular state: the role of nucleo cytoplasmic glycosylation in modulating cellular function in response to nutrition and stress. Biochim. Biophys. Acta. 1673, 13-28.PubMedCrossRefGoogle Scholar
  9. 9.
    Zachara, N. E. and Hart, G. W. (2006) Cell signaling, the essential role of O-GlcNAc. Biochim. Biophys. Acta. 1761, 599-617.PubMedCrossRefGoogle Scholar
  10. 10.
    O’Donnell, N., Zachara, N. E., Hart, G. W., and Marth, J. D. (2004) Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability. Mol. Cell. Biol. 24, 1680-1690.PubMedCrossRefGoogle Scholar
  11. 11.
    Shafi, R., Iyer, S. P., Ellies, L. G., O’Donnell, N., Marek, K. W., Chui, D., Hart, G. W., and Marth, J. D. (2000) The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. Proc. Natl. Acad. Sci. USA. 97, 5735-5739.PubMedCrossRefGoogle Scholar
  12. 12.
    Hartweck, L. M., Scott, C. L., and Olszewski, N. E. (2002) Free in PMC Two O-linked Nacetylglucosamine transferase genes of Arabidopsis thaliana L. Heynh. have overlapping functions necessary for gamete and seed development. Genetics. 161, 1279-1291.Google Scholar
  13. 13.
    Turner, J. R., Tartakoff, A. M., and Greenspan, N. S. (1990) Cytologic assessment of nuclear and cytoplasmic O-linked N-acetylglucosamine distribution by using anti-streptococcal monoclonal antibodies. Proc. Natl. Acad. Sci. USA. 87, 5608-5612.PubMedCrossRefGoogle Scholar
  14. 14.
    Holt, G. D., Snow, C. M., Senior, A., Haltiwanger, R. S., Gerace, L., and Hart, G. W. (1987) Nuclear pore complex glycoproteins contain cytoplasmically disposed O-linked N-acetylglucosamine. J. Cell Biol. 104, 1157-1164.PubMedCrossRefGoogle Scholar
  15. 15.
    Snow, C. M., Senior, A., and Gerace, L. (1987) Monoclonal antibodies identify a group of nuclear pore complex glycoproteins. J. Cell Biol. 104, 1143-1156.PubMedCrossRefGoogle Scholar
  16. 16.
    Comer, F. I., Vosseller, K., Wells, L., Accavitti, M. A., and Hart, G. W. (2001) Characterization of a mouse monoclonal antibody specific for O-linked N-acetylglucosamine. Anal. Biochem. 293, 169-177.PubMedCrossRefGoogle Scholar
  17. 17.
    Matsuoka, Y., Shibata, S., Yasuhara, N., and Yoneda, Y. (2002) MAb MY95, Anti-O-linked N-acetylglucosamine-modified proteins. Hybrid. Hybridomics. 21, 233-236.PubMedCrossRefGoogle Scholar
  18. 18.
    Kamemura, K., Hayes, B. K., Comer, F. I., and Hart, G. W. (2002) Dynamic interplay between O-glycosylation and O-phosphorylation of nucleocytoplasmic proteins: alternative glycosylation/phosphorylation of THR-58, a known mutational hot spot of c-Myc in lymphomas, is regulated by mitogens. J. Biol. Chem. 277, 19229-19235.PubMedCrossRefGoogle Scholar
  19. 19.
    Ludemann, N., Clement, A., Hans, V. H., Leschik, J., Behl, C., and Brandt, R. (2005) O-glycosylation of the tail domain of neurofilament protein M in human neurons and in spinal cord tissue of a rat model of amyotrophic lateralsclerosis (ALS). J. Biol. Chem. 280, 31648-31658.PubMedCrossRefGoogle Scholar
  20. 20.
    Roquemore, E. P., Chou, T. Y., and Hart, G. W. (1994) Detection of O-linked N-acetylglucosamine (O-GlcNAc) on cytoplasmic and nuclear proteins. Methods Enzymol. 230, 443-460.PubMedCrossRefGoogle Scholar
  21. 21.
    Torres, C. R., and Hart, G. W. (1984) Topography and polypeptide distribution of terminal Nacetylglucosamine residues on the surfaces of intactlymphocytes.Evidence for O-linked GlcNAc. J. Biol. Chem. 259, 3308-3317.PubMedGoogle Scholar
  22. 22.
    Khidekel, N., Arndt, S., Lamarre-Vincent, N., Lippert, A., Poulin-Kerstien, K.G., Ramakrishnan, B., Qasba, P. K., and Hsieh-Wilson, L. C. (2003) A chemoenzymatic approach toward the rapid and sensitive detection of O-GlcNAc posttranslational modifications. J. Am. Chem. Soc. 125, 16162-16163.PubMedCrossRefGoogle Scholar
  23. 23.
    Vocadlo, D. J., Hang, H. C., Kim, E. J., Hanover, J. A., and Bertozzi, C. R. (2003) A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proc. Natl. Acad. Sci. USA. 100, 9116-9121.PubMedCrossRefGoogle Scholar
  24. 24.
    Hayes, B. K., Greis, K. D., and Hart, G. W. (1995) Specific isolation of O-linked N-acetylglucosamine glycopeptides from complex mixtures. Anal. Biochem. 228, 115-122.PubMedCrossRefGoogle Scholar
  25. 25.
    Greis, K. D., Hayes, B. K., Comer, F. I., Kirk, M., Barnes, S., Lowary, T. L., and Hart, G. W. (1996) Selective detection and site-analysis of O-GlcNAc-modified glycopeptides by betaelimination and tandem electrospray mass spectrometry. Anal. Biochem. 234, 38-49.PubMedCrossRefGoogle Scholar
  26. 26.
    Greis, K. D. and Hart, G. W. (1998) Analytical methods for the study of O-GlcNAc glycoproteins and glycopeptides. Methods Mol. Biol. 76, 19-33.PubMedGoogle Scholar
  27. 27.
    Haynes, P. A., and Aebersold, R. (2000) Simultaneous detection and identification of O-GlcNAc-modified glycoproteins using liquid chromatography-tandem mass spectrometry. Anal. Chem. 72, 5402-5410.PubMedCrossRefGoogle Scholar
  28. 28.
    Zachara, N. E. and Gooley, A. A. (2000) Identification of glycosylation sites in mucin peptides by edman degradation. Methods Mol. Biol. 125, 121-128.PubMedGoogle Scholar
  29. 29.
    Vosseller, K., Hansen, K. C., Chalkley, R. J., Trinidad, J. C., Wells, L., Hart, G. W., and Burlingame, A. L. (2005) Quantitative analysis of both protein expression and serine/threonine post-translational modifications through stable isotope labeling with dithiothreitol. Proteomics. 5, 388-398.PubMedCrossRefGoogle Scholar
  30. 30.
    Wells, L., Vosseller, K., Cole, R. N., Cronshaw, J. M., Matunis, M. J., and Hart, G. W. (2002) Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine posttranslational modifications. Mol. Cell. Proteomics. 1, 791-804.PubMedCrossRefGoogle Scholar
  31. 31.
    Chalkley, R. J., and Burlingame, A. L. (2003) Identification of novel sites of O-N-acetylglucosamine modification of serum response factor using quadrupole time-of-flight mass spectrometry. Mol. Cell. Proteomics. 2, 182-190.PubMedCrossRefGoogle Scholar
  32. 32.
    Chalkley, R. J. and Burlingame, A. L. (2001) Identification of GlcNAcylation sites of peptides and alpha-crystallin using Q-TOF mass spectrometry. J. Am. Soc. Mass. Spectrom. 12, 1106-1113.PubMedCrossRefGoogle Scholar
  33. 33.
    Reason, A. J., Morris, H. R., Panico, M., Marais, R., Treisman, R. H., Haltiwanger, R. S., Hart, G. W., Kelly, W. G., and Dell, A. (1992) Localization of O-GlcNAc modification on the serum response transcription factor. J. Biol. Chem. 267, 16911-16021.PubMedGoogle Scholar
  34. 34.
    Reason, A. J., Blench, I. P., Haltiwanger, R. S., Hart, G. W., Morris, H. R., Panico, M., and Dell, A. (1991) High-sensitivity FAB-MS strategies for O-GlcNAc characterization. Glycobiology. 1, 585-594.PubMedCrossRefGoogle Scholar
  35. 35.
    Reason, A., Dell, A., Morris, H. R., Panico, M., Treisman, R., Marais, R., Hart, G. W., and Haltiwanger, R. S. (1991) Identification of O-GlcNAc attachment sites in transcription factors. Glycoconjugate J. 8, 211.Google Scholar
  36. 36.
    Nandi, A., Sprung, R., Barma, D. K., Zhao, Y., Kim, S. C., Falck, J. R., and Zhao, Y. (2006) Global identification of O-GlcNAc-modified proteins. Anal. Chem. 78, 452-458.PubMedCrossRefGoogle Scholar
  37. 37.
    Sprung, R., Nandi, A., Chen, Y., Kim, S. C., Barma, D., Falck, J. R., and Zhao, Y. (2005) Taggingvia-substrate strategy for probing O-GlcNAc modified proteins. J. Proteome Res. 4, 950-957.PubMedCrossRefGoogle Scholar
  38. Hart, G. W., Cole, R. N., Kreppel, L. K., Arnold, C. S., Comer, F. I., Iyer, S., Cheng, X., Carroll, J. and Parker, G. J. (2000) Glycosylation of proteins—a major challenge in mass spectrometry and proteomics. In: Proceedings of the 4th international symposium on mass spectrometry in the health and life sciences (Burlingame, A., Carr, S., and Baldwin, M., eds), Humana Press, Totowa, New Jersey, pp. 365-382Google Scholar
  39. 39.
    Bakhtiar, R. and Guan, Z. (2006) Electron capture dissociation mass spectrometry in characterization of peptides and proteins. Biotechnol. Lett. 28, 1047-1059.PubMedCrossRefGoogle Scholar
  40. 40.
    Dong, D. L. and Hart, G. W. (1994) Purification and characterization of an O-GlcNAc selective N-acetyl-beta-d-glucosaminidase from rat spleen cytosol. J. Biol. Chem. 269, 19321-19330.PubMedGoogle Scholar
  41. 41.
    Haltiwanger, R. S., Grove, K., and Philipsberg, G. A. (1998) Modulation of O-linked N-acetylglucosamine levels on nuclear and cytoplasmic proteins in vivo using the peptide O-GlcNAc-beta-N-acetylglucosaminidase inhibitor O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate. J. Biol. Chem. 273, 3611-3617.PubMedCrossRefGoogle Scholar
  42. 42.
    Kim, E. J., Perreira, M., Thomas, C. J., and Hanover, J. A. (2006) An O-GlcNAcase-specific inhibitor and substrate engineered by the extension of the N-acetyl moiety. J. Am. Chem. Soc. 128, 4234-4235.PubMedCrossRefGoogle Scholar
  43. 43.
    Lee, T. N., Alborn, W. E., Knierman, M. D., and Konrad, R. J. (2006) Alloxan is an inhibitor of O-GlcNAc-selective N-acetyl-beta-d-glucosaminidase. Biochem. Biophys. Res. Commun. 350, 1038-1043.PubMedCrossRefGoogle Scholar
  44. 44.
    Macauley, M. S., Whitworth, G. E., Debowski, A. W., Chin, D., and Vocadlo, D. J. (2005) O-GlcNAcase uses substrate-assisted catalysis: kinetic analysis and development of highly selective mechanism-inspired inhibitors. J. Biol. Chem. 280, 25313-25322.PubMedCrossRefGoogle Scholar
  45. 45.
    Stubbs, K. A., Zhang, N., and Vocadlo, D. J. (2006) A divergent synthesis of 2-acyl derivatives of PUGNAc yields selective inhibitors of O-GlcNAcase. Org. Biomol. Chem. 4, 839-845.PubMedCrossRefGoogle Scholar
  46. 46.
    Whitworth, G. E., Macauley, M. S., Stubbs, K. A., Dennis, R. J., Taylor, E. J., Davies, G. J., Greig, I. R., and Vocadlo, D. J. (2007) Analysis of PUGNAc and NAG-thiazoline as transition state analogues for human O-GlcNAcase: mechanistic and structural insights into inhibitor selectivity and transition state poise. J. Am. Chem. Soc. 129, 635-644.PubMedCrossRefGoogle Scholar
  47. 47.
    Okuyama, R. and Yachi, M. (2001) Cytosolic O-GlcNAc accumulation is not involved in beta cell death in HIT-T15 or Min6. Biochem. Biophys. Res. Commun. 287, 366-371.PubMedCrossRefGoogle Scholar
  48. 48.
    Gao, Y., Parker, G. J., and Hart, G. W. (2000) Streptozotocin-induced beta-cell death is independent of its inhibition of O-GlcNAcase in pancreatic Min6 cells. Arch. Biochem. Biophys. 383, 296-302.PubMedCrossRefGoogle Scholar
  49. 49.
    Gross, B. J., Kraybill, B. C., and Walker, S. (2005) Discovery of O-GlcNAc transferase inhibitors. J. Am. Chem. Soc. 127, 14588-14589.PubMedCrossRefGoogle Scholar
  50. 50.
    Fiordaliso, F., Leri, A., Cesselli, D., Limana, F., Safai, B., Nadal-Ginard, B., Anversa, P., and Kajstura, J. (2001) Hyperglycemia activates p53 and p53-regulated genes leading to myocyte cell death. Diabetes. 50, 2363-2375.PubMedCrossRefGoogle Scholar
  51. 51.
    James, L. R., Tang, D., Ingram, A., Ly, H., Thai, K., Cai, L., and Scholey, J. W. (2002) Flux through the hexosamine pathway is a determinant of nuclear factor kappaB- dependent promoter activation. Diabetes. 51, 1146-1156.PubMedCrossRefGoogle Scholar
  52. 52.
    Konrad, R. J., Zhang, F., Hale, J. E., Knierman, M. D., Becker, G. W., and Kudlow, J. E. (2002) Alloxan is an inhibitor of the enzyme O-linked N-acetylglucosamine transferase. Biochem. Biophys. Res. Commun. 293, 207-212.PubMedCrossRefGoogle Scholar
  53. 53.
    Marshall, S., Bacote, V., and Traxinger, R. R. (1991) Complete inhibition of glucose-induced desensitization of the glucose transport system by inhibitors of mRNA synthesis. Evidence for rapid turnover of glutamine:fructose-6-phosphate amidotransferase. J. Biol. Chem. 266, 4706-4712.PubMedGoogle Scholar
  54. 54.
    Greis, K. D., Hayes, B. K., Comer, F. I., Kirk, M., Barnes, S., Lowary, T. L., and Hart, G. W. (1996) Selective detection and site-analysis of O-GlcNAc-modified glycopeptides by betaelimination and tandem electrospray mass spectrometry. Anal. Biochem. 234, 38-49.PubMedCrossRefGoogle Scholar
  55. 55.
    Myllyharju, J. and Nokkala, S. (1998) Localization and identification of galactose/N-acetyl galactosamine and sialic acid-containing proteins in Chinese hamster metaphase chromosomes. Cell. Biol. Int. 22, 85-89.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Natasha E. Zachara
    • 1
  1. 1.The Department of Biological ChemistryThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations