Candidate Gene Association Studies

  • M. Dawn Teare
Part of the Methods in Molecular Biology book series (MIMB, volume 713)


Candidate gene association studies aim to establish or characterise association between the genetic ­variation occurring within a specific gene or locus and a phenotype. If the phenotype is quantitative, then the effect size is often measured as the difference between the genotype specific means or a per allele effect. When the phenotype is binary and the disease is either present or absent, the effect is summarised as a genotype specific risk or relative risk. This chapter focuses on methodology employed when a single or small number of genetic loci are being investigated for an association with a specific phenotype.

Key words

Odds ratio Relative risk Genotype specific relative risk Case–control study Haplotype risk 


  1. 1.
    Risch, N., Merikangas, K. (1996) The future of genetic studies of complex diseases. Science 273:1516–1517.PubMedCrossRefGoogle Scholar
  2. 2.
    Cordell, H.J., Clayton, D.G. (2005) Genetic epidemiology 3 – Genetic association studies. Lancet 366:1121–1131.PubMedCrossRefGoogle Scholar
  3. 3.
    Dobson, A.J. (2002) Normal Linear Models. In: An Introduction to Generalised Linear Models, 2nd Edition. Chapman and Hall/CRC: Boca Raton, FL, pp. 85–114.Google Scholar
  4. 4.
    Vignal, C., Bansal, A.T., Balding, D.J., et al. (2009) Genetic association of the major histocompatibility complex with rheumatoid arthritis implicates two non-DRB1 loci. Arthritis Rheum 60:53–62.PubMedCrossRefGoogle Scholar
  5. 5.
    Antoniou, A., Pharoah, P.D.P., Narod, S., et al. (2003) Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: A combined analysis of 22 studies. Am J Hum Genet 72:1117–1130.PubMedCrossRefGoogle Scholar
  6. 6.
  7. 7.
    Cox, A., Dunning, A.M., Garcia-Closas, M., et al. (2007) A common coding variant in CASP8 is associated with breast cancer risk. Nat Genet 39:352–358.PubMedCrossRefGoogle Scholar
  8. 8.
    Amos, C.I., Wu, X., Broderick, P., Gorlov, I.P., et al. (2008) Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat Genet 40:616–622.PubMedCrossRefGoogle Scholar
  9. 9.
    Jewell, N.P. (2004) Study Designs. In: Statistics for Epidemiology. Chapman and Hall/CRC: Boca Raton, FL, pp. 43–56.Google Scholar
  10. 10.
    Dobson, A.J. (2002) Binary Variables and Logistic Regression. In: An Introduction to Generalised Linear Models, 2nd Edition. Chapman and Hall/CRC: Boca Raton, FL, pp. 115–134.Google Scholar
  11. 11.
    Sutton, A.J., Abrams, K.R., Jones, D.R., Sheldon, T.A., Song, F. (2004) Methods for Meta-Analysis in Medical Research. Wiley: New York.Google Scholar
  12. 12.
    Sutton, A.J., Abrams, K.R., Jones, D.R., Sheldon, T.A., Song, F. (2004) Publication Bias. In: Methods for Meta-Analysis in Medical Research. Wiley: London, pp. 109–132.Google Scholar
  13. 13.
    Iles, M.M. (2010) Genome Wide Association. In: M.D. Teare (ed.) Genetic Epidemiology. Springer: New York.Google Scholar
  14. 14.
    Clayton, D., Chapman, J., Cooper, J. (2004) The use of unphased multilocus genotype data in indirect association studies. Genet Epidemiol 27:415–428.PubMedCrossRefGoogle Scholar
  15. 15.
    Guo, Y., Li, J., Bonham, A.J., Wang, Y., Deng, H. (2009) Gains in power for exhaustive analyses of haplotypes using variable-sized sliding window strategy: A comparison of association-mapping strategies. Eur J Hum Genet 17:785–792.PubMedCrossRefGoogle Scholar
  16. 16.
    Browning, B.L., Browning, S.R. (2009) A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet 84:210–223.PubMedCrossRefGoogle Scholar
  17. 17.
    Price, A.L., Patterson, N., Hancks, D.C., Myers, S., Reich, D., et al. (2008) Effects of cis and trans genetic ancestry on gene expression in African Americans. PLoS Genet 4:e1000294. doi:10.1371/journal.pgen.1000294.PubMedCrossRefGoogle Scholar
  18. 18.
    Balding, D.J. (2006) A tutorial on statistical methods for population association studies. Nat Rev Genet 7:781–791.PubMedCrossRefGoogle Scholar
  19. 19.
    Chen, Y., Shen, H., Yang, F., Liu, P.-Y., et al. (2009) Choice of phenotype in osteoporosis genetic research. J Bone Miner Metab 27:121–126.PubMedCrossRefGoogle Scholar
  20. 20.
    NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285:785–795.CrossRefGoogle Scholar
  21. 21.
    Morrison, N.A., Qi, J.C., Tokita, A., Kelly, P.J., et al. (1994) Prediction of bone density from vitamin D receptor alleles. Nature 367:284–287.PubMedCrossRefGoogle Scholar
  22. 22.
    Cooper, G.S., Umbach, D.M. (1996) Are vitamin D receptor polymorphsims associated with bone mineral density? J Bone Miner Res 11:1241–1248.Google Scholar
  23. 23.
    Thakkinstian, A., D’Este, C., Eisman, J., Nguyen, T., Attia, J. (2004) Meta-analysis of molecular association studies: Vitamin D receptor gene polymorphisms and BMD as a case study. J Bone Miner Res 19:419–428.PubMedCrossRefGoogle Scholar
  24. 24.
    Gong, G., Stern, H.S., Cheng, S.C., Fong, N., Mordeson, J., Deng, H.W., et al. (1999) The association of bone mineral density with vitamin D receptor gene polymorphisms. Osteoporos Int 9:55–64.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • M. Dawn Teare
    • 1
  1. 1.Health Services Research, School of Health and Related ResearchUniversity of SheffieldSheffieldUK

Personalised recommendations