Advertisement

Fine-Scale Structure of the Genome and Markers Used in Association Mapping

  • Karen Curtin
  • Nicola J. Camp
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 713)

Abstract

In this chapter, mutation (specifically single-nucleotide polymorphisms, SNPs) and recombination will be covered in more detail, and the concepts of genotype and haplotype will be reviewed. Linkage disequilibrium (LD) describes the strength of a relationship between alleles at different loci. The definition for LD, its visual representation, and the calculation of statistics that measure LD will be presented. The power of genetic association studies to identify disease susceptibility alleles fundamentally relies on the genetic variants studied. A standard approach is to determine a set of tagging-SNPs (tSNPs) that capture the majority of genomic variation in regions of interest by exploiting local correlation structures. The concept of LD and how it is used to select tSNPs will be addressed, as well as specific procedures and algorithms that are practiced by researchers to determine these variants.

Key words

Linkage disequilibrium Haplotype blocks Mutation Recombination Tagging-SNPs 

References

  1. 1.
    U.S. Department of Energy Office of Science. Human Genome Program. Human Genome Project Information. http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml. U.S. Department of Energy Office of Science: Oak ridge, TN, 2008.
  2. 2.
    National Institutes of Health. NIH Guide: Genetic Architecture of Complex Phenotypes. http://grants.nih.gov/grants/guide/pa-files/PA-98-078.html. National Institutes of Health, Office of Extramural Research: Bethesda, MD, 1998.
  3. 3.
    Crawford, D. C., Bhangale, T., Li, N., Hellenthal, G., Rieder, M. J., Nickerson, D. A., and Stephens, M. Evidence for substantial fine-scale variation in recombination rates across the human genome. Nat Genet, 36: 700–6, 2004.PubMedCrossRefGoogle Scholar
  4. 4.
    McVean, G. A., Myers, S. R., Hunt, S., Deloukas, P., Bentley, D. R., and Donnelly, P. The fine-scale structure of recombination rate variation in the human genome. Science, 304: 581–4, 2004.PubMedCrossRefGoogle Scholar
  5. 5.
    U.S. National Library of Medicine. Genetics Home Reference: Your Guide to Understanding Genetic Conditions. http://ghr.nlm.nih.gov/handbook/mutationsanddisorders/genemutation. National Institutes of Health: Bethesda, MD, 2008.
  6. 6.
    National Center for Human Genome Research, National Institutes of Health. Crossing-Over: Genetic Recombination. New Tools for Tomo­rrow’s Health Research, Access Excellence Resource Center: Bethesda, MD, 1992.Google Scholar
  7. 7.
    Wellcome Trust. The Human Genome. http://genome.wellcome.ac.uk/. Wellcome Trust: London, UK, 2008.
  8. 8.
    Devlin, B. and Risch, N. A comparison of linkage disequilibrium measures for fine-scale mapping. Genomics, 29: 311–22, 1995.PubMedCrossRefGoogle Scholar
  9. 9.
    Lewontin, R. C. On measures of gametic disequilibrium. Genetics, 120: 849–52, 1988.PubMedGoogle Scholar
  10. 10.
    Pritchard, J. K. and Przeworski, M. Linkage disequilibrium in humans: models and data. Am J Hum Genet, 69: 1–14, 2001.PubMedCrossRefGoogle Scholar
  11. 11.
    Excoffier, L. and Slatkin, M. Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol Biol Evol, 12: 921–7, 1995.PubMedGoogle Scholar
  12. 12.
    Hawley, M. E. and Kidd, K. K. HAPLO: a program using the EM algorithm to estimate the frequencies of multi-site haplotypes. J Hered, 86: 409–11, 1995.PubMedGoogle Scholar
  13. 13.
    Long, J. C., Williams, R. C., and Urbanek, M. An E-M algorithm and testing strategy for multiple-locus haplotypes. Am J Hum Genet, 56: 799–810, 1995.PubMedGoogle Scholar
  14. 14.
    Johnson, G. C., Esposito, L., Barratt, B. J., Smith, A. N., Heward, J., Di Genova, G., Ueda, H., Cordell, H. J., Eaves, I. A., Dudbridge, F., Twells, R. C., Payne, F., Hughes, W., Nutland, S., Stevens, H., Carr, P., Tuomilehto-Wolf, E., Tuomilehto, J., Gough, S. C., Clayton, D. G., and Todd, J. A. Haplotype tagging for the identification of common disease genes. Nat Genet, 29: 233–7, 2001.PubMedCrossRefGoogle Scholar
  15. 15.
    Thomas, A. GCHap: fast MLEs for haplotype frequencies by gene counting. Bioinformatics, 19: 2002–3, 2003.PubMedCrossRefGoogle Scholar
  16. 16.
    Niu, T. Algorithms for inferring haplotypes. Genet Epidemiol, 27: 334–47, 2004.PubMedCrossRefGoogle Scholar
  17. 17.
    Li, S. S., Cheng, J. J., and Zhao, L. P. Empirical vs Bayesian approach for estimating haplotypes from genotypes of unrelated individuals. BMC Genet, 8: 2, 2007.PubMedCrossRefGoogle Scholar
  18. 18.
    Stephens, M., Smith, N. J., and Donnelly, P. A new statistical method for haplotype reconstruction from population data. Am J Hum Genet, 68: 978–89, 2001.PubMedCrossRefGoogle Scholar
  19. 19.
    Zhao, J. H., Curtis, D., and Sham, P. C. Model-free analysis and permutation tests for allelic associations. Hum Hered, 50: 133–9, 2000.PubMedCrossRefGoogle Scholar
  20. 20.
    Gabriel, S. B., Schaffner, S. F., Nguyen, H., Moore, J. M., Roy, J., Blumenstiel, B., Higgins, J., DeFelice, M., Lochner, A., Faggart, M., Liu-Cordero, S. N., Rotimi, C., Adeyemo, A., Cooper, R., Ward, R., Lander, E. S., Daly, M. J., and Altshuler, D. The structure of haplotype blocks in the human genome. Science, 296: 2225–9, 2002.PubMedCrossRefGoogle Scholar
  21. 21.
    Daly, M. J., Rioux, J. D., Schaffner, S. F., Hudson, T. J., and Lander, E. S. High-resolution haplotype structure in the human genome. Nat Genet, 29: 229–32, 2001.PubMedCrossRefGoogle Scholar
  22. 22.
    Reich, D. E., Cargill, M., Bolk, S., Ireland, J., Sabeti, P. C., Richter, D. J., Lavery, T., Kouyoumjian, R., Farhadian, S. F., Ward, R., and Lander, E. S. Linkage disequilibrium in the human genome. Nature, 411: 199–204, 2001.PubMedCrossRefGoogle Scholar
  23. 23.
    Phillips, M. S., Lawrence, R., Sachidanandam, R., Morris, A. P., Balding, D. J., Donaldson, M. A., Studebaker, J. F., Ankener, W. M., Alfisi, S. V., Kuo, F. S., Camisa, A. L., Pazorov, V., Scott, K. E., Carey, B. J., Faith, J., Katari, G., Bhatti, H. A., Cyr, J. M., Derohannessian, V., Elosua, C., Forman, A. M., Grecco, N. M., Hock, C. R., Kuebler, J. M., Lathrop, J. A., Mockler, M. A., Nachtman, E. P., Restine, S. L., Varde, S. A., Hozza, M. J., Gelfand, C. A., Broxholme, J., Abecasis, G. R., Boyce-Jacino, M. T., and Cardon, L. R. Chromosome-wide distribution of haplotype blocks and the role of recombination hot spots. Nat Genet, 33: 382–7, 2003.PubMedCrossRefGoogle Scholar
  24. 24.
    Dawson, E., Abecasis, G. R., Bumpstead, S., Chen, Y., Hunt, S., Beare, D. M., Pabial, J., Dibling, T., Tinsley, E., Kirby, S., Carter, D., Papaspyridonos, M., Livingstone, S., Ganske, R., Lohmussaar, E., Zernant, J., Tonisson, N., Remm, M., Magi, R., Puurand, T., Vilo, J., Kurg, A., Rice, K., Deloukas, P., Mott, R., Metspalu, A., Bentley, D. R., Cardon, L. R., and Dunham, I. A first-generation linkage disequilibrium map of human chromosome 22. Nature, 418: 544–8, 2002.PubMedCrossRefGoogle Scholar
  25. 25.
    Patil, N., Berno, A. J., Hinds, D. A., Barrett, W. A., Doshi, J. M., Hacker, C. R., Kautzer, C. R., Lee, D. H., Marjoribanks, C., McDonough, D. P., Nguyen, B. T., Norris, M. C., Sheehan, J. B., Shen, N., Stern, D., Stokowski, R. P., Thomas, D. J., Trulson, M. O., Vyas, K. R., Frazer, K. A., Fodor, S. P., and Cox, D. R. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science, 294: 1719–23, 2001.PubMedCrossRefGoogle Scholar
  26. 26.
    Barrett, J. C., Fry, B., Maller, J., and Daly, M. J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 21: 263–5, 2005.PubMedCrossRefGoogle Scholar
  27. 27.
    Abecasis, G. R. and Cookson, W. O. GOLD – graphical overview of linkage disequilibrium. Bioinformatics, 16: 182–3, 2000.PubMedCrossRefGoogle Scholar
  28. 28.
    Ke, X., Hunt, S., Tapper, W., Lawrence, R., Stavrides, G., Ghori, J., Whittaker, P., Collins, A., Morris, A. P., Bentley, D., Cardon, L. R., and Deloukas, P. The impact of SNP density on fine-scale patterns of linkage disequilibrium. Hum Mol Genet, 13: 577–88, 2004.PubMedCrossRefGoogle Scholar
  29. 29.
    Frazer, K. A., Ballinger, D. G., Cox, D. R., Hinds, D. A., Stuve, L. L., Gibbs, R. A., Belmont, J. W., Boudreau, A., Hardenbol, P., Leal, S. M., Pasternak, S., Wheeler, D. A., Willis, T. D., Yu, F., Yang, H., Zeng, C., Gao, Y., Hu, H., Hu, W., Li, C., Lin, W., Liu, S., Pan, H., Tang, X., Wang, J., Wang, W., Yu, J., Zhang, B., Zhang, Q., Zhao, H., Zhao, H., Zhou, J., Gabriel, S. B., Barry, R., Blumenstiel, B., Camargo, A., Defelice, M., Faggart, M., Goyette, M., Gupta, S., Moore, J., Nguyen, H., Onofrio, R. C., Parkin, M., Roy, J., Stahl, E., Winchester, E., Ziaugra, L., Altshuler, D., Shen, Y., Yao, Z., Huang, W., Chu, X., He, Y., Jin, L., Liu, Y., Shen, Y., Sun, W., Wang, H., Wang, Y., Wang, Y., Xiong, X., Xu, L., Waye, M. M., Tsui, S. K., Xue, H., Wong, J. T., Galver, L. M., Fan, J. B., Gunderson, K., Murray, S. S., Oliphant, A. R., Chee, M. S., Montpetit, A., Chagnon, F., Ferretti, V., Leboeuf, M., Olivier, J. F., Phillips, M. S., Roumy, S., Sallee, C., Verner, A., Hudson, T. J., Kwok, P. Y., Cai, D., Koboldt, D. C., Miller, R. D., Pawlikowska, L., Taillon-Miller, P., Xiao, M., Tsui, L. C., Mak, W., Song, Y. Q., Tam, P. K., Nakamura, Y., Kawaguchi, T., Kitamoto, T., Morizono, T., Nagashima, A., Ohnishi, Y., et al. A second generation human haplotype map of over 3.1 million SNPs. Nature, 449: 851–61, 2007.PubMedCrossRefGoogle Scholar
  30. 30.
    Livingston, R. J., von Niederhausern, A., Jegga, A. G., Crawford, D. C., Carlson, C. S., Rieder, M. J., Gowrisankar, S., Aronow, B. J., Weiss, R. B., and Nickerson, D. A. Pattern of sequence variation across 213 environmental response genes. Genome Res, 14: 1821–31, 2004.PubMedCrossRefGoogle Scholar
  31. 31.
    Carlson, C. S., Eberle, M. A., Rieder, M. J., Yi, Q., Kruglyak, L., and Nickerson, D. A. Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet, 74: 106–20, 2004.PubMedCrossRefGoogle Scholar
  32. 32.
    The International HapMap Consortium. A haplotype map of the human genome. Nature, 437: 1299–320, 2005.CrossRefGoogle Scholar
  33. 33.
    The International HapMap Consortium. The International HapMap Project. Nature, 426: 789–96, 2003.CrossRefGoogle Scholar
  34. 34.
    Iles, M. M. Quantification and correction of bias in tagging SNPs caused by insufficient sample size and marker density by means of haplotype-dropping. Genet Epidemiol, 32: 20–8, 2008.PubMedCrossRefGoogle Scholar
  35. 35.
    Zeggini, E., Rayner, W., Morris, A. P., Hattersley, A. T., Walker, M., Hitman, G. A., Deloukas, P., Cardon, L. R., and McCarthy, M. I. An evaluation of HapMap sample size and tagging SNP performance in large-scale empirical and simulated data sets. Nat Genet, 37: 1320–2, 2005.PubMedCrossRefGoogle Scholar
  36. 36.
    Curtin, K., Iles, M. M., and Camp, N. J. Identifying rarer genetic variants for common complex diseases: diseased versus neutral discovery panels. Ann Hum Genet, 73: 54–60, 2009.PubMedCrossRefGoogle Scholar
  37. 37.
    National Institutes of Health, N. H. G. R. I. International Consortium Announces the 1000 Genomes Project. pp. News Release, 2008.Google Scholar
  38. 38.
    Ke, X., Miretti, M. M., Broxholme, J., Hunt, S., Beck, S., Bentley, D. R., Deloukas, P., and Cardon, L. R. A comparison of tagging methods and their tagging space. Hum Mol Genet, 14: 2757–67, 2005.PubMedCrossRefGoogle Scholar
  39. 39.
    de Bakker, P. I., Yelensky, R., Pe’er, I., Gabriel, S. B., Daly, M. J., and Altshuler, D. Efficiency and power in genetic association studies. Nat Genet, 37: 1217–23, 2005.PubMedCrossRefGoogle Scholar
  40. 40.
    Amos, C. I. Successful design and conduct of genome-wide association studies. Hum Mol Genet, 16 (Spec No. 2): R220–5, 2007.PubMedCrossRefGoogle Scholar
  41. 41.
    Halldorsson, B. V., Istrail, S., and De La Vega, F. M. Optimal selection of SNP markers for disease association studies. Hum Hered, 58: 190–202, 2004.PubMedCrossRefGoogle Scholar
  42. 42.
    Ao, S. I., Yip, K., Ng, M., Cheung, D., Fong, P. Y., Melhado, I., and Sham, P. C. CLUSTAG: hierarchical clustering and graph methods for selecting tag SNPs. Bioinformatics, 21: 1735–6, 2005.PubMedCrossRefGoogle Scholar
  43. 43.
    Easton, D. F., Pooley, K. A., Dunning, A. M., Pharoah, P. D., Thompson, D., Ballinger, D. G., Struewing, J. P., Morrison, J., Field, H., Luben, R., Wareham, N., Ahmed, S., Healey, C. S., Bowman, R., Meyer, K. B., Haiman, C. A., Kolonel, L. K., Henderson, B. E., Le Marchand, L., Brennan, P., Sangrajrang, S., Gaborieau, V., Odefrey, F., Shen, C. Y., Wu, P. E., Wang, H. C., Eccles, D., Evans, D. G., Peto, J., Fletcher, O., Johnson, N., Seal, S., Stratton, M. R., Rahman, N., Chenevix-Trench, G., Bojesen, S. E., Nordestgaard, B. G., Axelsson, C. K., Garcia-Closas, M., Brinton, L., Chanock, S., Lissowska, J., Peplonska, B., Nevanlinna, H., Fagerholm, R., Eerola, H., Kang, D., Yoo, K. Y., Noh, D. Y., Ahn, S. H., Hunter, D. J., Hankinson, S. E., Cox, D. G., Hall, P., Wedren, S., Liu, J., Low, Y. L., Bogdanova, N., Schurmann, P., Dork, T., Tollenaar, R. A., Jacobi, C. E., Devilee, P., Klijn, J. G., Sigurdson, A. J., Doody, M. M., Alexander, B. H., Zhang, J., Cox, A., Brock, I. W., MacPherson, G., Reed, M. W., Couch, F. J., Goode, E. L., Olson, J. E., Meijers-Heijboer, H., van den Ouweland, A., Uitterlinden, A., Rivadeneira, F., Milne, R. L., Ribas, G., Gonzalez-Neira, A., Benitez, J., Hopper, J. L., McCredie, M., Southey, M., Giles, G. G., Schroen, C., Justenhoven, C., Brauch, H., Hamann, U., Ko, Y. D., Spurdle, A. B., Beesley, J., Chen, X., Mannermaa, A., Kosma, V. M., Kataja, V., Hartikainen, J., Day, N. E., et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature, 447: 1087–93, 2007.PubMedCrossRefGoogle Scholar
  44. 44.
    Eeles, R. A., Kote-Jarai, Z., Giles, G. G., Olama, A. A., Guy, M., Jugurnauth, S. K., Mulholland, S., Leongamornlert, D. A., Edwards, S. M., Morrison, J., Field, H. I., Southey, M. C., Severi, G., Donovan, J. L., Hamdy, F. C., Dearnaley, D. P., Muir, K. R., Smith, C., Bagnato, M., Ardern-Jones, A. T., Hall, A. L., O’Brien, L. T., Gehr-Swain, B. N., Wilkinson, R. A., Cox, A., Lewis, S., Brown, P. M., Jhavar, S. G., Tymrakiewicz, M., Lophatananon, A., Bryant, S. L., Horwich, A., Huddart, R. A., Khoo, V. S., Parker, C. C., Woodhouse, C. J., Thompson, A., Christmas, T., Ogden, C., Fisher, C., Jamieson, C., Cooper, C. S., English, D. R., Hopper, J. L., Neal, D. E., and Easton, D. F. Multiple newly identified loci associated with prostate cancer susceptibility. Nat Genet, 40: 316–21, 2008.PubMedCrossRefGoogle Scholar
  45. 45.
    Gao, X., Gordon, D., Zhang, D., Browne, R., Helms, C., Gillum, J., Weber, S., Devroy, S., Swaney, S., Dobbs, M., Morcuende, J., Sheffield, V., Lovett, M., Bowcock, A., Herring, J., and Wise, C. CHD7 gene polymorphisms are associated with susceptibility to idiopathic scoliosis. Am J Hum Genet, 80: 957–65, 2007.PubMedCrossRefGoogle Scholar
  46. 46.
    Klein, R. J., Zeiss, C., Chew, E. Y., Tsai, J. Y., Sackler, R. S., Haynes, C., Henning, A. K., SanGiovanni, J. P., Mane, S. M., Mayne, S. T., Bracken, M. B., Ferris, F. L., Ott, J., Barnstable, C., and Hoh, J. Complement factor H polymorphism in age-related macular degeneration. Science, 308: 385–9, 2005.PubMedCrossRefGoogle Scholar
  47. 47.
    Salonen, J. T., Uimari, P., Aalto, J. M., Pirskanen, M., Kaikkonen, J., Todorova, B., Hypponen, J., Korhonen, V. P., Asikainen, J., Devine, C., Tuomainen, T. P., Luedemann, J., Nauck, M., Kerner, W., Stephens, R. H., New, J. P., Ollier, W. E., Gibson, J. M., Payton, A., Horan, M. A., Pendleton, N., Mahoney, W., Meyre, D., Delplanque, J., Froguel, P., Luzzatto, O., Yakir, B., and Darvasi, A. Type 2 diabetes whole-genome association study in four populations: the DiaGen consortium. Am J Hum Genet, 81: 338–45, 2007.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Karen Curtin
    • 1
  • Nicola J. Camp
    • 1
  1. 1.Genetic Epidemiology Division, Department of Biomedical InformaticsUniversity of UtahSalt Lake CityUSA

Personalised recommendations