Advertisement

Copy Number Variation

  • Louise V. WainEmail author
  • Martin D. Tobin
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 713)

Abstract

Recent genetic epidemiology studies have been dominated by genome-wide association (GWA) studies using single nucleotide polymorphisms (SNPs). However, a form of structural genomic variation, termed copy number variation (CNV), is also widespread throughout the human genome, and can be highly polymorphic between individuals. Such variation has long been shown, through candidate gene studies using low-throughput molecular biology techniques, to have direct consequences on human health and variation. Many studies have now sought to extensively characterise this variation on a genome-wide scale and, increasingly, attempts are being made to identify associations between CNV and human disease. Although many of the study design issues that have been described for SNP GWA studies are also relevant for CNV GWA studies, CNV studies also present their own unique set of challenges and considerations. New microarray-based technologies are enabling more accurate mapping of CNVs, and CNV maps of the human genome are being regularly refined with increasing resolution. The study of CNV and its effects on human health and disease therefore present a dynamic and exciting challenge for researchers in the field of genetic epidemiology.

Key words

Copy number variation Structural variation Genome-wide association studies Genetic epidemiology Human disease Human variation 

References

  1. 1.
    Conrad DF, Andrews TD, Carter NP, Hurles ME, and Pritchard JK (2006) A high-resolution survey of deletion polymorphism in the human genome. Nat Genet 38: 75–81PubMedCrossRefGoogle Scholar
  2. 2.
    Fredman D, White SJ, Potter S, Eichler EE, Den Dunnen JT, et al. (2004) Complex SNP-related sequence variation in segmental genome duplications. Nat Genet 36: 861–6PubMedCrossRefGoogle Scholar
  3. 3.
    Hinds DA, Kloek AP, Jen M, Chen X, and Frazer KA (2006) Common deletions and SNPs are in linkage disequilibrium in the human genome. Nat Genet 38: 82–5PubMedCrossRefGoogle Scholar
  4. 4.
    Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, et al. (2004) Detection of large-scale variation in the human genome. Nat Genet 36: 949–51PubMedCrossRefGoogle Scholar
  5. 5.
    Locke DP, Sharp AJ, McCarroll SA, McGrath SD, Newman TL, et al. (2006) Linkage disequilibrium and heritability of copy-number polymorphisms within duplicated regions of the human genome. Am J Hum Genet 79: 275–90PubMedCrossRefGoogle Scholar
  6. 6.
    McCarroll SA, Hadnott TN, Perry GH, Sabeti PC, Zody MC, et al. (2006) Common deletion polymorphisms in the human genome. Nat Genet 38: 86–92PubMedCrossRefGoogle Scholar
  7. 7.
    Mills RE, Luttig CT, Larkins CE, Beauchamp A, Tsui C, et al. (2006) An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Res 16: 1182–90PubMedCrossRefGoogle Scholar
  8. 8.
    Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, et al. (2006) Global variation in copy number in the human genome. Nature 444: 444–54PubMedCrossRefGoogle Scholar
  9. 9.
    Sebat J, Lakshmi B, Troge J, Alexander J, Young J, et al. (2004) Large-scale copy number polymorphism in the human genome. Science 305: 525–8PubMedCrossRefGoogle Scholar
  10. 10.
    Sharp AJ, Locke DP, McGrath SD, Cheng Z, Bailey JA, et al. (2005) Segmental duplications and copy-number variation in the human genome. Am J Hum Genet 77: 78–88PubMedCrossRefGoogle Scholar
  11. 11.
    Tuzun E, Sharp AJ, Bailey JA, Kaul R, Morrison VA, et al. (2005) Fine-scale structural variation of the human genome. Nat Genet 37: 727–32PubMedCrossRefGoogle Scholar
  12. 12.
    Wong KK, deLeeuw RJ, Dosanjh NS, Kimm LR, Cheng Z, et al. (2007) A comprehensive analysis of common copy-number variations in the human genome. Am J Hum Genet 80: 91–104PubMedCrossRefGoogle Scholar
  13. 13.
    Gonzalez E, Kulkarni H, Bolivar H, Mangano A, Sanchez R, et al. (2005) The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science 307: 1434–40PubMedCrossRefGoogle Scholar
  14. 14.
    Perry GH, Dominy NJ, Claw KG, Lee AS, Fiegler H, et al. (2007) Diet and the evolution of human amylase gene copy number variation. Nat Genet 39: 1256–60PubMedCrossRefGoogle Scholar
  15. 15.
    Stankiewicz P and Lupski JR (2002) Genome architecture, rearrangements and genomic disorders. Trends Genet 18: 74–82PubMedCrossRefGoogle Scholar
  16. 16.
    Lupski JR (1998) Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet 14: 417–22PubMedCrossRefGoogle Scholar
  17. 17.
    Hollox EJ, Armour JA, and Barber JC (2003) Extensive normal copy number variation of a beta-defensin antimicrobial-gene cluster. Am J Hum Genet 73: 591–600PubMedCrossRefGoogle Scholar
  18. 18.
    Ingelman-Sundberg M, Sim SC, Gomez A, and Rodriguez-Antona C (2007) Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 116: 496–526PubMedCrossRefGoogle Scholar
  19. 19.
    Aldred PM, Hollox EJ, and Armour JA (2005) Copy number polymorphism and expression level variation of the human alpha-defensin genes DEFA1 and DEFA3. Hum Mol Genet 14: 2045–52PubMedCrossRefGoogle Scholar
  20. 20.
    Aitman TJ, Dong R, Vyse TJ, Norsworthy PJ, Johnson MD, et al. (2006) Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature 439: 851–5PubMedCrossRefGoogle Scholar
  21. 21.
    Hollox EJ, Huffmeier U, Zeeuwen PL, Palla R, Lascorz J, et al. (2008) Psoriasis is associated with increased beta-defensin genomic copy number. Nat Genet 40: 23–5PubMedCrossRefGoogle Scholar
  22. 22.
    Fanciulli M, Norsworthy PJ, Petretto E, Dong R, Harper L, et al. (2007) FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity. Nat Genet 39: 721–3PubMedCrossRefGoogle Scholar
  23. 23.
    Yang Y, Chung EK, Wu YL, Savelli SL, Nagaraja HN, et al. (2007) Gene copy-number variation and associated polymorphisms of complement component C4 in human systemic lupus erythematosus (SLE): low copy number is a risk factor for and high copy number is a protective factor against SLE susceptibility in European Americans. Am J Hum Genet 80: 1037–54PubMedCrossRefGoogle Scholar
  24. 24.
    Ahuja SK, Kulkarni H, Catano G, Agan BK, Camargo JF, et al. (2008) CCL3L1-CCR5 genotype influences durability of immune recovery during antiretroviral therapy of HIV-1-infected individuals. Nat Med 14: 413–20PubMedCrossRefGoogle Scholar
  25. 25.
    Kuhn L, Schramm DB, Donninger S, Meddows-Taylor S, Coovadia AH, et al. (2007) African infants’ CCL3 gene copies influence perinatal HIV transmission in the absence of maternal nevirapine. AIDS 21: 1753–61PubMedCrossRefGoogle Scholar
  26. 26.
    Townson JR, Barcellos LF, and Nibbs RJ (2002) Gene copy number regulates the production of the human chemokine CCL3-L1. Eur J Immunol 32: 3016–26PubMedCrossRefGoogle Scholar
  27. 27.
    Willcocks LC, Lyons PA, Clatworthy MR, Robinson JI, Yang W, et al. (2008) Copy number of FCGR3B, which is associated with systemic lupus erythematosus, correlates with protein expression and immune complex uptake. J Exp Med 205: 1573–82PubMedCrossRefGoogle Scholar
  28. 28.
    Deeb SS (2005) The molecular basis of variation in human color vision. Clin Genet 67: 369–77PubMedCrossRefGoogle Scholar
  29. 29.
    Zipfel PF, Edey M, Heinen S, Jozsi M, Richter H, et al. (2007) Deletion of complement factor H-related genes CFHR1 and CFHR3 is associated with atypical hemolytic uremic syndrome. PLoS Genet 3: e41PubMedCrossRefGoogle Scholar
  30. 30.
    Qin K, Du X, and Rich BH (2007) An Alu-mediated rearrangement causing a 3.2kb deletion and a novel two base pair deletion in AAAS gene as the cause of triple A syndrome. Mol Genet Metab 92: 359–63PubMedCrossRefGoogle Scholar
  31. 31.
    Beysen D, Raes J, Leroy BP, Lucassen A, Yates JR, et al. (2005) Deletions involving long-range conserved nongenic sequences upstream and downstream of FOXL2 as a novel disease-causing mechanism in blepharophimosis syndrome. Am J Hum Genet 77: 205–18PubMedCrossRefGoogle Scholar
  32. 32.
    Lee JA, Madrid RE, Sperle K, Ritterson CM, Hobson GM, et al. (2006) Spastic paraplegia type 2 associated with axonal neuropathy and apparent PLP1 position effect. Ann Neurol 59: 398–403PubMedCrossRefGoogle Scholar
  33. 33.
    Muncke N, Wogatzky BS, Breuning M, Sistermans EA, Endris V, et al. (2004) Position effect on PLP1 may cause a subset of Pelizaeus-Merzbacher disease symptoms. J Med Genet 41: e121PubMedCrossRefGoogle Scholar
  34. 34.
    Fielder AH, Walport MJ, Batchelor JR, Rynes RI, Black CM, et al. (1983) Family study of the major histocompatibility complex in patients with systemic lupus erythematosus: importance of null alleles of C4A and C4B in determining disease susceptibility. Br Med J (Clin Res Ed) 286: 425–8CrossRefGoogle Scholar
  35. 35.
    Howard PF, Hochberg MC, Bias WB, Arnett FC, Jr., and McLean RH (1986) Relationship between C4 null genes, HLA-D region antigens, and genetic susceptibility to systemic lupus erythematosus in Caucasian and black Americans. Am J Med 81: 187–93PubMedCrossRefGoogle Scholar
  36. 36.
    Dunckley H, Gatenby PA, Hawkins B, Naito S, and Serjeantson SW (1987) Deficiency of C4A is a genetic determinant of systemic lupus erythematosus in three ethnic groups. J Immunogenet 14: 209–18PubMedCrossRefGoogle Scholar
  37. 37.
    Avent ND, Martin PG, Armstrong-Fisher SS, Liu W, Finning KM, et al. (1997) Evidence of genetic diversity underlying Rh D-, weak D (Du), and partial D phenotypes as determined by multiplex polymerase chain reaction analysis of the RHD gene. Blood 89: 2568–77PubMedGoogle Scholar
  38. 38.
    Bae JS, Cheong HS, Kim JO, Lee SO, Kim EM, et al. (2008) Identification of SNP markers for common CNV regions and association analysis of risk of subarachnoid aneurysmal hemorrhage in Japanese population. Biochem Biophys Res Commun 373: 593–6PubMedCrossRefGoogle Scholar
  39. 39.
    Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, et al. (2007) Strong association of de novo copy number mutations with autism. Science 316: 445–9PubMedCrossRefGoogle Scholar
  40. 40.
    Xu B, Roos JL, Levy S, van Rensburg EJ, Gogos JA, et al. (2008) Strong association of de novo copy number mutations with sporadic schizophrenia. Nat Genet 30: 30Google Scholar
  41. 41.
    Kumar RA, KaraMohamed S, Sudi J, Conrad DF, Brune C, et al. (2008) Recurrent 16p11.2 microdeletions in autism. Hum Mol Genet 17: 628–38PubMedCrossRefGoogle Scholar
  42. 42.
    Stefansson H, Rujescu D, Cichon S, Pietilainen OP, Ingason A, et al. (2008) Large recurrent microdeletions associated with schizophrenia. Nature 455: 232–6PubMedCrossRefGoogle Scholar
  43. 43.
    Stone JL, O’Donovan MC, Gurling H, Kirov GK, Blackwood DH, et al. (2008) Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 455: 237–41CrossRefGoogle Scholar
  44. 44.
    Lucito R, Healy J, Alexander J, Reiner A, Esposito D, et al. (2003) Representational ­oligonucleotide microarray analysis: a high-resolution method to detect genome copy number variation. Genome Res 13: 2291–305PubMedCrossRefGoogle Scholar
  45. 45.
    Blauw HM, Veldink JH, van Es MA, van Vught PW, Saris CG, et al. (2008) Copy-number variation in sporadic amyotrophic lateral sclerosis: a genome-wide screen. Lancet Neurol 28: 28Google Scholar
  46. 46.
    Colella S, Yau C, Taylor JM, Mirza G, Butler H, et al. (2007) QuantiSNP: an objective Bayes Hidden-Markov Model to detect and accurately map copy number variation using SNP genotyping data. Nucleic Acids Res 35: 2013–25PubMedCrossRefGoogle Scholar
  47. 47.
    Komura D, Shen F, Ishikawa S, Fitch KR, Chen W, et al. (2006) Genome-wide detection of human copy number variations using high-density DNA oligonucleotide arrays. Genome Res 16: 1575–84PubMedCrossRefGoogle Scholar
  48. 48.
    Laframboise T, Harrington D, and Weir BA (2007) PLASQ: a generalized linear model-based procedure to determine allelic dosage in cancer cells from SNP array data. Biostatistics 8: 323–36PubMedCrossRefGoogle Scholar
  49. 49.
    Nannya Y, Sanada M, Nakazaki K, Hosoya N, Wang L, et al. (2005) A robust algorithm for copy number detection using high-density oligonucleotide single nucleotide polymorphism genotyping arrays. Cancer Res 65: 6071–9PubMedCrossRefGoogle Scholar
  50. 50.
    Partek Genomics Suite. Version 6.3 Copyright © 2008 Partek Inc., St. Louis, MO, USAhttp://www.partek.com"
  51. 51.
    Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, et al. (2008) Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 320: 539–43PubMedCrossRefGoogle Scholar
  52. 52.
    Wang K, Li M, Hadley D, Liu R, Glessner J, et al. (2007) PennCNV: An integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res 5: 5Google Scholar
  53. 53.
    Weiss LA, Shen Y, Korn JM, Arking DE, Miller DT, et al. (2008) Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med 358: 667–75PubMedCrossRefGoogle Scholar
  54. 54.
    Zhao X, Li C, Paez JG, Chin K, Janne PA, et al. (2004) An integrated view of copy number and allelic alterations in the cancer genome using single nucleotide polymorphism arrays. Cancer Res 64: 3060–71PubMedCrossRefGoogle Scholar
  55. 55.
    Day N, Hemmaplardh A, Thurman RE, Stamatoyannopoulos JA, and Noble WS (2007) Unsupervised segmentation of continuous genomic data. Bioinformatics 23: 1424–6PubMedCrossRefGoogle Scholar
  56. 56.
    McCarroll SA, Kuruvilla FG, Korn JM, Cawley S, Nemesh J, et al. (2008) Integrated detection and population-genetic analysis of SNPs and copy number variation. Nat Genet 7: 7Google Scholar
  57. 57.
    Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8: 286–98PubMedCrossRefGoogle Scholar
  58. 58.
    Kidd JM, Cooper GM, Donahue WF, Hayden HS, Sampas N, et al. (2008) Mapping and sequencing of structural variation from eight human genomes. Nature 453: 56–64PubMedCrossRefGoogle Scholar
  59. 59.
    Korbel JO, Urban AE, Affourtit JP, Godwin B, Grubert F, et al. (2007) Paired-end mapping reveals extensive structural variation in the human genome. Science 318: 420–6PubMedCrossRefGoogle Scholar
  60. 60.
    Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24: 133–41PubMedCrossRefGoogle Scholar
  61. 61.
    Peiffer DA, Le JM, Steemers FJ, Chang W, Jenniges T, et al. (2006) High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping. Genome Res 16: 1136–48PubMedCrossRefGoogle Scholar
  62. 62.
    The International HapMap Consortium (2003) The international HapMap project. Nature 426: 789–96CrossRefGoogle Scholar
  63. 63.
    Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, et al. (2008) Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet 82: 477–88PubMedCrossRefGoogle Scholar
  64. 64.
    Cooper GM, Zerr T, Kidd JM, Eichler EE, and Nickerson DA (2008) Systematic assessment of copy number variant detection via genome-wide SNP genotyping. Nat Genet 7: 7Google Scholar
  65. 65.
    Sherry ST, Ward M, and Sirotkin K (1999) dbSNP-database for single nucleotide polymorphisms and other classes of minor genetic variation. Genome Res 9: 677–9PubMedGoogle Scholar
  66. 66.
    Barnes C, Plagnol V, Fitzgerald T, Redon R, Marchini J, et al. (2008) A robust statistical method for case-control association testing with copy number variation. Nat Genet 7: 7Google Scholar
  67. 67.
    Korn JM, Kuruvilla FG, McCarroll SA, Wysoker A, Nemesh J, et al. (2008) Integrated genotype calling and association analysis of SNPs, common copy number polymorphisms and rare CNVs. Nat Genet 7: 7Google Scholar
  68. 68.
    Szatmari P, Paterson AD, Zwaigenbaum L, Roberts W, Brian J, et al. (2007) Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet 39: 319–28PubMedCrossRefGoogle Scholar
  69. 69.
    Barnes C, Plagnol V, Marchini J, Clayton DG, and Hurles ME (2008) A robust and statistical method for case-control association testing with copy number variation. Nat Genet 40: 1245–52PubMedCrossRefGoogle Scholar
  70. 70.
    Clayton DG, Walker NM, Smyth DJ, Pask R, Cooper JD, et al. (2005) Population structure, differential bias and genomic control in a large-scale, case-control association study. Nat Genet 37: 1243–6PubMedCrossRefGoogle Scholar
  71. 71.
    McCarroll SA, Huett A, Kuballa P, Chilewski SD, Landry A, et al. (2008) Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn’s disease. Nat Genet 24: 24Google Scholar
  72. 72.
    Matarin M, Simon-Sanchez J, Fung HC, Scholz S, Gibbs JR, et al. (2008) Structural genomic variation in ischemic stroke. Neurogenetics 21: 21Google Scholar
  73. 73.
    Franke L, de Kovel CG, Aulchenko YS, Trynka G, Zhernakova A, et al. (2008) Detection, imputation, and association analysis of small deletions and null alleles on oligonucleotide arrays. Am J Hum Genet 82: 1316–33PubMedCrossRefGoogle Scholar
  74. 74.
    Wain LV, Armour JA, and Tobin MD (2009) Genomic copy number variation, human health, and disease. Lancet 374: 340–50PubMedCrossRefGoogle Scholar
  75. 75.
    Feuk L, Carson AR, and Scherer SW (2006) Structural variation in the human genome. Nat Rev Genet 7: 85–97PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Health SciencesUniversity of LeicesterLeicesterUK
  2. 2.Departments of Health Sciences and GeneticsUniversity of LeicesterLeicesterUK

Personalised recommendations