The Extraordinary Diversity of Bacterial Protein Secretion Mechanisms

  • I. Barry Holland
Part of the Methods in Molecular Biology book series (MIMB, volume 619)


I have tried to cover the minimal properties of the prolific number of protein secretion systems identified presently, particularly in Gram negative bacteria. New systems, however, are being reported almost by the month and certainly I have missed some. With the accumulating evidence one remains in awe of the complexity of some pathways, with the Type III, IV and VI especially fearsome and impressive. These systems illustrate that protein secretion from bacteria is not only about passage of large polypeptides across a bilayer but also through long tunnels, raising quite different questions concerning mechanisms. The mechanism of transport via the Sec-translocase–translocon is well on the way to full understanding, although a structure of a stuck intermediate would be very helpful. The understanding of the precise details of the mechanism of targeting specificity, and actual polypeptide translocation in other systems is, however, far behind. Groups willing to do the difficult (and risky) work to understand mechanism should therefore be more actively encouraged, perhaps to pursue multidisciplinary, collaborative studies. In writing this review I have become fascinated by the cellular regulatory mechanisms that must be necessary to orchestrate the complex flow of so many polypeptides, targeted by different signals to such a wide variety of transporters. I have tried to raise questions about how this might be managed but much more needs to be done in this area. Clearly, this field is very much alive and the future will be full of revealing and surprising twists in the story.

Key words

Protein secretion pathways translocon translocase bacteria transport tunnels insertases SRP SecA 


  1. 1.
    Engelman, D.M. (2005) Membranes are more mosaic than fluid. Nature. 438, 578–580.CrossRefPubMedGoogle Scholar
  2. 2.
    Singer, S.J. and Nicolson, G.L. (1972) The fluid mosaic model of the structure of cell membranes. Science. 175, 720–723.CrossRefPubMedGoogle Scholar
  3. 3.
    Yamane, K., Bunai, K. and Kakeshita, H. (2007) Protein traffic for secretion and related machinery of Bacillus subtilis. Biosci. Biotech. Biochem. 68, 2007–2023.CrossRefGoogle Scholar
  4. 4.
    Fu, L.L. (2007) Protein secretion pathways in Bacillus subtilis: Implication for optimization of heterologous protein secretion. Biotechnol. Advances. 25, 1–12.CrossRefGoogle Scholar
  5. 5.
    Economou, A., Christie, P. J., Fernandez, R. C., Palmer, T., Plano, G. V. and Pugsley, A. T. (2006) Secretion by numbers: protein traffic in prokaryotes. Mol. Microbiol. 62, 308–319.CrossRefPubMedGoogle Scholar
  6. 6.
    McLaughlin, B., Chon, J.S., MacGurn J.A., Carlsson, F. Cheng, T.L. and Cox, J.S. (2007) A Mycobacterium ESX-1-secreted virulence factor with unique requirements for export. PloS Pathogens. 3(8), e105.CrossRefPubMedGoogle Scholar
  7. 7.
    Abdallah, A.M., Gey van Pittius, N. C., Champion, P. A., Cox, J., Luirink, J., Vandenbroucke-Grauls, C. M., Appelmelk, B. J. and Bitter, W. (2007). Type VII secretion – mycobacteria show the way. Nat. Rev. Microbiol. 5, 883–891.CrossRefPubMedGoogle Scholar
  8. 8.
    Mandlik, A., Swierczynski, A., Das, A. and Ton-That, H. (2007) Pili in Gram positive bacteria: assembly, involvment in colonization and biofilm development. Trends Microbiol. 16, 33–40.CrossRefGoogle Scholar
  9. 9.
    Papanikou, E., Karamanou, S. and Economou, A. (2007) Bacterial protein secretion through the translocase nanomachine. Nat. Rev. Microbiol. 5, 839–851.CrossRefPubMedGoogle Scholar
  10. 10.
    Driessen. A. J. and Nouwen. N. (2008) Protein translocation across the bacterial membrane. Annu. Rev. Biochem. 77, 643–667.CrossRefPubMedGoogle Scholar
  11. 11.
    Eijlander, R. T., Jongbloed J. D. and Kuipers, O. P. (2009) Relaxed specificity of the Bacillus subtilis TatAdCd translocase in Tat dependent protein secretion. J. Bacteriol. 191, 196–202.CrossRefPubMedGoogle Scholar
  12. 12.
    Sargent, F., Berks, B.C. and Palmer, T. (2003) Pathfinders and trailblazers: a prokaryotic targeting system for transport of folded proteins. FEMS Microbial. Lett. 254, 198–207.CrossRefGoogle Scholar
  13. 13.
    Gentle, I., Gabriel, K., Beech, P., Waller, R. and Lithgow, T. (2004) The Omp85 family of outer membrane proteins is essential for outer membrane biogenesis in mitochondria and bacteria. J. Cell. Biol. 164, 19–24.CrossRefPubMedGoogle Scholar
  14. 14.
    Wu, T., Malinvemi, J., Ruiz, M., Kim, S., Silhavy, T. J. and Kahne, D. (2005) Identification of a multicompnent complex required for outer membrane biogenesis in Escherichia coli. Cell. 121, 235–245.CrossRefPubMedGoogle Scholar
  15. 15.
    Holland, I.B., Schmitt, L. and Young, J. (2005) Type I protein secretion in bacteria, the ABC transporter dependent pathway. Molec. Mem. Biol. 22, 29–39.CrossRefGoogle Scholar
  16. 16.
    Mueller, C.A., Broz, P. and Coenelis, G.R. (2008) The Type III secretion system tip complex and translocon. Molec. Microbiol. 68, 1085–1095.CrossRefGoogle Scholar
  17. 17.
    Backert. S., Fronzes, R. and Waksman, G. (2008) VirB2 and VirB5 proteins: specialised adhesins in bacterial type-IV secretion systems? Trends Microbiol. 16, 409–413.CrossRefPubMedGoogle Scholar
  18. 18.
    Apel, D. and Surette. M.G. (2008) Bringing order to a complex machine: The assembly of the bacterial flagella. Biochim. Biophys. Acta. 1778, 1851–1858.CrossRefPubMedGoogle Scholar
  19. 19.
    Yamanaka, H., Kobayashi, H., Takahashi, E. and Keinosuke, O. (2008) MacAB is involved in the secretion of Escherichia coli heat stable enterotoxin II. J. Bacteriol. 190, 7693–7698.CrossRefPubMedGoogle Scholar
  20. 20.
    D’Enfert. C., Ryter, A and Pugsley, A. P. (1987) Cloning and expression in Escherichia coli of the Klebsiella pneumoniae genes for production, surface localisation and secretion of the lipoprotein pullulanase. EMBO J. 6, 3531–3538.PubMedGoogle Scholar
  21. 21.
    Johnson, T. L., Abendroth, J., Wim, G. J. Hol. and Sandkvist, M. (206) Type II secretion: from structure to function. FEMS Microbiol. Lett. 255, 175–186.CrossRefPubMedGoogle Scholar
  22. 22.
    Verma, A. and Burns, D. L. (2007) Requirements for assembly of PtlH with the pertussis toxin transporter apparatus of Bordetella pertussis. Infection Immun. 75, 2297–2306.CrossRefGoogle Scholar
  23. 23.
    Hodak, H. and Jacob-Dubuisson, F. (2007) Current challenges in autotransport and two-partner protein secretion pathways. Res. Microbiol. 158, 631–637.CrossRefPubMedGoogle Scholar
  24. 24.
    Ruer, S., Ball, G., Filloux, A. and de Bentzmann, S. (2008) The ‘P-usher’, a novel protein transporter involved in fimbrial assembly and TpsA secretion. EMBO J. 7, 2669–2680.CrossRefGoogle Scholar
  25. 25.
    Holland, I. B. (2005) Translocation of bacterial proteins. Biochim. Biophys. Acta. 1694, 5–16.Google Scholar
  26. 26.
    Saier, M. H. (2006) Protein secretion and membrane insertion systems in Gram negative bacteria. J. Membrane. Biol. 214, 75–90.CrossRefGoogle Scholar
  27. 27.
    Karamanou, S., Bariami, V., Papanikou, E., Kalodimos, C. G. and Economou, A. (2008) Assembly of the translocase motor onto the preprotein-conducting channel. Mol. Microbiol. 70, 311–322.CrossRefPubMedGoogle Scholar
  28. 28.
    Erlandsen, K.J., Miller, S. B. M., Nam, Y., Osborne, A. R., Zimmer, J. and Rapoport, T.A. (2008) A role for the two-helix finger of the SecA ATPase in protein translocation. Nature. 455, 984–987.CrossRefGoogle Scholar
  29. 29.
    Zimmer, J., Nam, Y. and Rapoport, T.A. (2008) Structure of a complex of the ATPase SecA and the protein-translocation channel. Nature. 455, 936–943.CrossRefPubMedGoogle Scholar
  30. 30.
    Tsukazaki, T., Mori, H., Fukai, S., Ishitani, R., Mori, T., Dohmae, N., Perederina, A., Sugita, Y., Vassylyev, D. G., Ito, K. and Nureki, O. (2008) Conformational transition of Sec machinery inferred from bacterial SecYE structures. Nature. 455, 988–991.CrossRefPubMedGoogle Scholar
  31. 31.
    Xie, K., Hessa, T., Seppala, S., Rapp, M., von Heijne G, and Dalbey, R. E. (2007) Features of transmembrane segments that promote lateral release from the translocase into the lipid phase. Biochemistry. 46, 15153–15161.CrossRefPubMedGoogle Scholar
  32. 32.
    Eijlander, R.T. Jongbloed, J.D. and Kuipers, O.P. (2009) Relaxed specificity of the Bacillus subtilis TatAdCd translocase in Tat-dependent protein secretion. J. Bacteriol. 191, 196–202.CrossRefPubMedGoogle Scholar
  33. 33.
    Blight. M. A., Chervaux, C. and Holland. (1994) Protein secretion pathway in E. coli. Curr. Opin. Biotechnol. 5, 468–474.CrossRefPubMedGoogle Scholar
  34. 34.
    Balakrishnan, L., Hughes, C. and Koronakis, V. (2001) Substrate-triggered recruitment of the TolC channel-tunnel during type I export of hemolysin in Escherchia coli. J. Mol. Biol. 313, 501–510.CrossRefPubMedGoogle Scholar
  35. 35.
    Koronakis, V., Sharff, A; Koronakis, E., Luisi, B. and Hughes, C. (2000) Crystal structure of the bacterial membrane protein TolC, central to multidrug efflux and protein export. Nature. 405, 4914–919.CrossRefGoogle Scholar
  36. 36.
    Eswaren, J., Hughes, C. and Koronakis, V. (2003) lockingTolC entrance helices to prevent protein translocation by the bacterial type I export apparatus. J. Mol. Biol. 327, 309–315.CrossRefGoogle Scholar
  37. 37.
    Chervaux, C. and Holland, I. B. (1996) Random and directed mutagenesis to elucidate the functional importance of helix II and F-989 in the C-terminal secretion signal of Escherichia coli. J. Bacteriol. 178, 1232–1236.PubMedGoogle Scholar
  38. 38.
    Koronakis, V., Hughes, C. and Koronakis, V. (1991) Energetically distinct early and late stages of HlyB/HlyD-dependent secretion across both Escherichia coli membranes. EMBO J. 10, 3263–3272.PubMedGoogle Scholar
  39. 39.
    Zaitseva, J., Jenewein, S., Wiedenmann, A., Holland, I. B. and Schmitt, L. (2005) H662 is the linchpin of ATP hydrolysis in the nucleotide-binding domain of the ABC transporter HlyB. EMBO J. 24, 1901–1910.CrossRefPubMedGoogle Scholar
  40. 40.
    Zaitseva, J., Oswald, C., Jumpertz, T., Wiedenmann, A., Holland, I. B. and Schmitt, L. (2006) A structural analysis of symmetry required for catalytic activity of an ABC-ATPase domain dimer. EMBO J. 25, 3432–3443.CrossRefPubMedGoogle Scholar
  41. 41.
    Baron, C. (2006) VirB8: a conserved type IV secretion system assembly factor and drug target. Biochem. Cell Biol. 84, 890–899.CrossRefPubMedGoogle Scholar
  42. 42.
    Paul, K. Erhardt, M, Hirano, T., Blair, D. F. and Hughes, K.T. (2009) Energy source and type III flagella secretion. Nature. 451, 489–492.CrossRefGoogle Scholar
  43. 43.
    Galan, J. E. and Wolf-Watz, H. (2006) Protein delivery into eukaryoteic cells by type III secretion machines. Nature. 444, 567–573.CrossRefPubMedGoogle Scholar
  44. 44.
    Hendersen, I.R., Navarro-Garcia, F., Desvaux, M., Fernandez, R. C. and Ala‘Aldeen, D. (2004) Type V secretion pathway: the autotransporter story. Microbiol. Molec. Biol. Rev. 68, 692–744.CrossRefGoogle Scholar
  45. 45.
    Oomen, C. J., van Ulsen, P., Van Gelder, P., Feijen, M., Tommassen, J. and Gros, P. (2004) Structure of the translocator domain of a bacterial autotransporter. EMBO J. 23, 1257–1266.CrossRefPubMedGoogle Scholar
  46. 46.
    Wells, T. J., Tree, J. J., Ulett, G. C. and Schembri, M. A. (2007) Autotransporter proteins: novel targets at the bacterial cell surface. FEMS Microbiol. Lett. 274, 163–172.CrossRefPubMedGoogle Scholar
  47. 47.
    Francetic, O., Buddeimeijer, N., Lewenza, S., Kumamoto, C. A. and Pugsley A. P. (2007) Signal recognition particle-dependent inner membrane targeting of the PulG pseudoplin of a type II secretion system.J. Bacteriol. 189, 1783–1793.CrossRefPubMedGoogle Scholar
  48. 48.
    Arts, J., van Boxtel, R., Filloux, A., Tommassen J. and Koster, M. (2007) Expression of the pseudopilin XcpT of the P. aeruginosa type II secretion system via the signal recognition particle – Sec pathway. J. Bacteriol. 189, 2069–2076.CrossRefPubMedGoogle Scholar
  49. 49.
    Craig L. and Li, J. (2008) Type IV pili: paradoxes in form and function. Curr. Opin. Struct. Biol. 18, 267–277.PubMedGoogle Scholar
  50. 50.
    Ferrandez, Y. and Condemine, G. (2008) Novel mechanism of outer membrane targeting of proteins in Gram negative bacteria. Mol. Microbiol. 69, 1349–1357.CrossRefPubMedGoogle Scholar
  51. 51.
    Proft, T. and Baker, E. N. (2008) Pili in Gram-negative and Gram-positive bacteria - structure, assembly and their role in disease. Cell Mol. Life Sci. Oct. 27 E-PubGoogle Scholar
  52. 52.
    Vignon, G., Kohler, R., Larquet, E., Giroux, S., Prevost, M. C., Roux, P. and Pugsley, A. P. (2003) Type IV-like pili formed by the type II secreton: specificity, composition, bundling, polar localization, and surface presentation of peptides. J. Bacteriol. 185, 3416–3428.CrossRefPubMedGoogle Scholar
  53. 53.
    Collins, R. F. (2007) Wza: a new structural paradigm for outer membrane secretory proteins? Trends Microbiol. 15, 96–100.CrossRefPubMedGoogle Scholar
  54. 54.
    Remaut., H., Tang, C., Henderson, N. S., Pinkner, J. S., Wang, T., Hultgren, S. J., Thanassi, D. G., Waksman, G. and Li, H. (2008) Fiber formation across the outer membrane by the chaperone/usher pathway. Cell. 133, 640–652.CrossRefPubMedGoogle Scholar
  55. 55.
    Chevance, F. F. and Hughes, K. T. (2008) Coordinating assembly of a bacterial macromolecular machine. Nat. Rev. Microbiol. 6, 445–455.CrossRefGoogle Scholar
  56. 56.
    Jaumouille, V., Francertic, O., Sansonetti, P. J. and Nhieu, G. T. V. (2008) Cytoplasmic targeting of IpaC to the bacterial pole directs polar type III secretion in Shigella. EMBO J. 27, 447–457.CrossRefPubMedGoogle Scholar
  57. 57.
    Judd, P. K., Kumar, R. B. and Das, A. (2005) The type IV apparatus protein VirB6 of Agrobacterium tumefaciens localizes to a cell pole. Mol. Microbiol. 55, 115–124.CrossRefPubMedGoogle Scholar
  58. 58.
    Jain, S., van Ulsen, P., Benz, I., Schmidt, M. A., Fernandez, R., Tommassen, J. and Goldberg, M. B. (2006) Polar localization of the autotransporter family of large bacterial virulence proteins. J. Bacteriol. 188, 4841–4850.CrossRefPubMedGoogle Scholar
  59. 59.
    Senf, F., Tommassen, J. and Koster, M. (2008) Polar secretion of proteins via the Xcp type II secretion system in Pseudomonas aeruginosa. Microbiology. 154, 3025–3032.CrossRefPubMedGoogle Scholar
  60. 60.
    Campo, N., Tjalsma, H., Buist, G., Stepniak, D., Meijer, M., Veenhuis, M., Westermann, M., Muller, J. P., Bron, S., Kok, J., Kuipers, O. P. and Jongbloed, J. D. H. (2004) Subcellular secretion sites for bacterial export. Mol. Microbiol. 53, 1583–1599.CrossRefPubMedGoogle Scholar
  61. 61.
    Shiomi, D., Yoshimoto, M., Homma, M. and Kawagishi, I. (2006) Helical distribution of the bacterial chemorecptor via colocalization with the Sec protein translocation machinery. Mol. Microbiol. 60, 894–906.CrossRefPubMedGoogle Scholar
  62. 62.
    Dubnau, D. and Losick, R. (2006) Bistability in bacteria. Mol. Microbiol. 61, 564–572.CrossRefPubMedGoogle Scholar
  63. 63.
    Chai, Y., Chu, F., Kolter, R. and Losick, R. (2008) Bistability and biofilm formation in Bacillus subtilis. Mol. Microbiol. 67, 254–263.CrossRefPubMedGoogle Scholar
  64. 64.
    Nikaido, H. (1996) The outer membrane. In F. C. Neidhardt (Ed.) Escherichia coli and Salmonella: cellular and molecular biology, Second edition, volume 1, pp. 29–47, ASM Press, Washington D.C.Google Scholar
  65. 65.
    Schatz, P. J., Bieker, K. L., Ottamann, K. M., Silhavy, T. J. and Beckwith J. (1991) One of three transmembrane stretches is sufficient for the functioning of the SecE protein, a membrane component of the E. coli secretion machinery. EMBO J. 10, 1749–1757.PubMedGoogle Scholar
  66. 66.
    Osborne, A. R. and Rapoport. T. A. (2007) Protein translocation is mediated by oligomers of the SecY complex with one SecY copy forming the channel. Cell. 129, 97–110.CrossRefPubMedGoogle Scholar
  67. 67.
    Baars, L., Wagner, S., Wickstrom, D., Klepsch, M., Ytterberg, A. J., van Vijk, K. J. and de Gier, J. W. (2008) Effects of SecE depletion on the inner and outer membrane proteome of Escherichia coli. J. Bacteriol. 190, 3505–3525.CrossRefPubMedGoogle Scholar
  68. 68.
    Baker, K., Mackman, N., Jackson, M. and Holland, I. B. (1987) Role of SecA and SecY in protein export as revealed by studies of TonA assembly into the outer membrane of Escherchia coli. J. Mol. Biol. 198, 693–703.CrossRefPubMedGoogle Scholar
  69. 69.
    Oliver, D. B. (1993) SecA protein: autoregulated ATPase catalysing preprotein insertion and translocation across the Escherichia coli inner membrane. Mol. Microbiol. 7, 159–165.CrossRefPubMedGoogle Scholar
  70. 70.
    Chen, R. and Henning, U. (1996) A periplasmic protein (Skp) of Escherichia coli selectively binds a class of outer membrane proteins. Mol. Microbiol. 19, 1287–1294.CrossRefPubMedGoogle Scholar
  71. 71.
    Bos, M. P., Robert, V. and Tommassen J. (2007) Biogenesis of the Gram negative bacterial outer membrane. Annu. Rev. Microbiol. 61, 191–214.CrossRefPubMedGoogle Scholar
  72. 72.
    Voulhoux, R., Bos, M. P., Mols, M. and Tommassen J. (2003) Role of a highly conserved bacterial protein in outer membrane assembly. Science. 299, 262–265.CrossRefPubMedGoogle Scholar
  73. 73.
    Doerrier, W. T. and Raetz, R. H. (2005) Loss of outer membrane proteins without inhibition of lipid export in an Escherichia coli YaeT mutant. J. Biol. Chem. 280, 27679–27687.CrossRefGoogle Scholar
  74. 74.
    Bernstein H.D. (2007) Are bacterial ‘autotransporters’ really transporters? Trends Microbiol. 15, 441–447.CrossRefPubMedGoogle Scholar
  75. 75.
    Preston, G. M. (2007) Metropolitan microbes: type III secretion in multihost symbionts. Cell Host Microbe. 2, 291–294.CrossRefPubMedGoogle Scholar
  76. 76.
    Bendtsen, J. D., Kiemer, L., Fausboll, A. and Brunak, S. (2005) Non-classical secretion in bacteria. BMC Microbiol. Oct 7, 5, 38.Google Scholar
  77. 77.
    Wai, S. N., Lindmark, B., Soderblom, T., Takadi, A., Westermark, M., Oscarsson, J., Jass, J., Richter-Dahlfors, A., Mizunoe, Y. and Uhlin, B. E. (2003) Vesicle-mediated export and assembly of pore forming oligomers of the enterobacterial ClyA cytotoxin. Cell. 115, 25–35.CrossRefPubMedGoogle Scholar
  78. 78.
    Balsalobre, C., Silvan, J. M., Berglund, S., Mizunoe, Y., Uhlin, B. E. and Wai, S. N. (2006) Release of the type 1 secreted α-haemolysin via outer membrane vesicles from Escherichia coli. Mol. Microbiol. 59, 99–112.CrossRefPubMedGoogle Scholar
  79. 79.
    Mackman, N., Baker, K., Gray, L., Haigh, R., Nicaud, J. M. and Holland I.B. (1987) Release of a chimeric protein into the medium from Escherichia coli using the C-terminal secretion signal of haemolysin. EMBO J. 6, 2835–2841.PubMedGoogle Scholar
  80. 80.
    Filloux, A., Hachani, A. and Bleves, S. (2008) The bacterial type VI secretion machine: yet another player for protein transport across membranes. Microbiology. 154, 1570–1583.CrossRefPubMedGoogle Scholar
  81. 81.
    Pukatzki, S., Ms, A. T., Revel, A. T., Sturtevant, D. and Mekalanos, J. J. (2007) Type IV secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc. Acad. Sci. USA. 103, 1528–1533.CrossRefGoogle Scholar
  82. 82.
    Mougous, J. D., Gifford, C. A., Ramsdell, T.L. and Mekalanos, J. J. (2007) Threonine phosphorylation postranslationally regulates protein secretion in Pseudomonas aeruginosa. Nat. Cell. Biol. 9, 797–803.CrossRefPubMedGoogle Scholar
  83. 83.
    Celebi, N., Dalbey, R. E. and Yuan, J. (2008) Mechanism and hydrophobic forces driving membrane protein insertion of subunit II of cytochrome bo 3 oxidase. J. Mol. Biol. 375, 1282–1292.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • I. Barry Holland
    • 1
  1. 1.Institut de Genetique et Microbiologie, UMR 8621 CNRS, Universite de Paris-SudOrsayFrance

Personalised recommendations