Advertisement

In Situ Ligation Simplified: Using PCR Fragments for Detection of Double-Strand DNA Breaks in Tissue Sections

  • Vladimir V. DidenkoEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 682)

Abstract

The simplified in situ ligation procedure is described. All reagents for the assay can be easily obtained in any molecular or cell biology laboratory. The technique uses ligation of double-stranded, PCR-derived DNA fragments labeled with digoxigenin or fluorophores for highly selective detection of apoptotic cells in paraffin-embedded tissue sections. Two types of DNA fragments prepared by PCR are employed. The fragment synthesized by Taq polymerase contains single-base 3′ overhangs, whereas the Pfu polymerase-made fragment is blunt ended. Both fragments can be used as specific, sensitive and cost-effective DNA damage probes. After ligation to apoptotic nuclei in tissue sections, they indicate the presence of double-strand DNA breaks with single-base 3′ overhangs as well as blunt ends.

Key words

Blunt-ended DNA breaks Double-strand DNA breaks Single-base overhangs PCR fragments Apoptosis detection DNA damage detection In situ labeling In situ ligation Tissue sections 

References

  1. 1.
    Didenko, V.V., Tunstead, J.R., Hornsby, P.J. (1998) Biotin-labeled hairpin oligonucleotides. Probes to detect double-strand breaks in DNA in apoptotic cells. Am J Pathol 152, 897–902.PubMedGoogle Scholar
  2. 2.
    Didenko, V.V., Boudreaux, D.J., Baskin, D.S. (1999) Substantial background reduction in ligase-based apoptosis detection using newly designed hairpin oligonucleotide probes. Biotechniques 27, 1130–1132.PubMedGoogle Scholar
  3. 3.
    Didenko, V.V. (2002) Detection of specific double-strand DNA breaks and apoptosis in situ using T4 DNA ligase, in In Situ Detection of DNA Damage: Methods and Protocols (Didenko, V.V. ed.), Humana, Totowa, NJ, pp.143–151.Google Scholar
  4. 4.
    Didenko, V.V., Minchew, C.L., Shuman, S., Baskin, D.S. (2004) Semi-artificial fluorescent molecular machine for DNA damage detection. Nano Lett 27, 1130–1132.Google Scholar
  5. 5.
    Walker, P.R., Leblanc, J., Carson, C., Ribecco, M., Sikorska, M. (1999) Neither caspase-3 nor DNA fragmentation factor is required for high molecular weight DNA degradation in apoptosis. Ann N Y Acad Sci 887, 48–59.PubMedCrossRefGoogle Scholar
  6. 6.
    Didenko, V.V., and Hornsby, P.J. (1996) Presence of double-strand breaks with single-base 3′ overhangs in cells undergoing apoptosis but not necrosis. J Cell Biol 135, 1369–1376.PubMedCrossRefGoogle Scholar
  7. 7.
    Koda, M., Takemura, G., Kanoh, M., Hayakawa, K., Kawase, Y., Maruyama, R., Li, Y., Minatoguchi, S., Fujiwara, T., Fujiwara, H. (2003) Myocytes positive for in situ markers for DNA breaks in human hearts which are hypertrophic, but neither failed nor dilated: a manifestation of cardiac hypertrophy rather than failure. J Pathol 199, 229–236.PubMedCrossRefGoogle Scholar
  8. 8.
    Okada, H., Takemura, G., Koda, M., Kanoh, M., Kawase, Y., Minatoguchi, S., Fujiwara, H. (2005) Myocardial apoptotic index based on in situ DNA nick end-labeling of endomyocardial biopsies does not predict prognosis of dilated cardiomyopathy. Chest 128 (2), 1060–1062.PubMedCrossRefGoogle Scholar
  9. 9.
    Schoppet, M., Al-Fakhri, N., Franke, F.E., Katz, N., Barth, P.J., Maisch, B., Preissner, K.T., Hofbauer, L.C. (2004) Localization of osteoprotegerin, tumor necrosis factor-related apoptosis-inducing ligand, and receptor activator of nuclear factor-kappaB ligand in Mönckeberg’s sclerosis and atherosclerosis. J Clin Endocrinol Metab 89 (8), 4104–4112.PubMedCrossRefGoogle Scholar
  10. 10.
    Audo, I., Darjatmoko, S.R., Schlamp, C.L., Lokken, J.M., Lindstrom, M.J., Albert, D.M., Nickells, R.W. (2003) Vitamin D analogues increase p53, p21, and apoptosis in a xenograft model of human retinoblastoma. Invest Ophthalmol Vis Sci 44 (10), 4192–4199.PubMedCrossRefGoogle Scholar
  11. 11.
    Al-Fakhri, N., Chavakis, T., Schmidt-Woll, T., Huang, B., Cherian, S.M., Bobryshev, Y.V., Lord, R.S.A., Katz, N., Preissner, K.T. (2003) Induction of apoptosis in vascular cells by plasminogen activator inhibitor-1 and high molecular weight kininogen correlates with their anti-adhesive properties. J Biol Chem 384, 423–435.Google Scholar
  12. 12.
    Matsuoka, R., Ogawa, K., Yaoita, H., Naganuma, W., Maehara, K., Maruyama, Y. (2002) Characteristics of death of neonatal rat cardiomyocytes following hypoxia or hypoxia-reoxygenation: the association of apoptosis and cell membrane disintegrity. Heart Vessels 16 (6), 241–248.PubMedCrossRefGoogle Scholar
  13. 13.
    Guerra, S., Leri, A., Wang, X., Finato, N., Di Loreto, C., Beltrami, C.A., Kajstura, J., Anversa, P. (1999) Myocyte death in the failing human heart is gender dependent. Circ Res 85 (9), 856–866.PubMedCrossRefGoogle Scholar
  14. 14.
    Leri, A., Claudio, P.P., Li, Q., Wang, X., Reiss, K., Wang, S., Malhotra, A., Kajstura, J., Anversa, P. (1998) Strech-mediated release of angiotensin II induces myocyte apoptosis by activating p53 that enhances the local renin-angiotensin system and decreases the Bcl-2 to Bax protein ratio in the cell. J Clin Invest 101, 1326–1342.PubMedCrossRefGoogle Scholar
  15. 15.
    Murata, I., Takemura, G., Asano, K., Sano, H., Fujisawa, K., Kagawa, T., Baba, K., Maruyama, R., Minatoguchi, S., Fujiwara, T., Fujiwara, H. (2002) Apoptotic cell loss ­following cell proliferation in renal glomeruli of Otsuka Long-Evans Tokushima Fatty rats, a model of human type 2 diabetes. Am J Nephrol 22 (5–6), 587–595.PubMedCrossRefGoogle Scholar
  16. 16.
    Emanuel, J.R. (1991) Simple and efficient system for synthesis of non-radioactive nucleic acid hybridization probes using PCR. Nucleic Acids Res 19, 2790.PubMedCrossRefGoogle Scholar
  17. 17.
    Bozkurt, B., Kribbs, S.B., Clubb, F.J. Jr., Michael, L.H., Didenko, V.V., Hornsby, et al. (1998) Pathophysiologically relevant concentrations of tumor necrosis factor-alpha promote progressive left ventricular dysfunction and remodeling in rats. Circulation 97, 1382–1391.PubMedCrossRefGoogle Scholar
  18. 18.
    Frustaci, A., Chimenti, C., Setoguchi, M., Guerra, S., Corsello, S., Crea, F., et al. (1999) Cell death in acromegalic cardiomyopathy. Circulation 99, 1426–1434.PubMedCrossRefGoogle Scholar
  19. 19.
    Li, B., Setoguchi, M., Wang, X., Andreoli, A.M., Leri, A., Malhotra, A., Kajstura, J., Anversa, P. (1999) Insulin-like growth factor-1 attenuates the detrimental impact of nonocclusive coronary artery constriction on the heart. Circ Res 84, 1007–1019.PubMedCrossRefGoogle Scholar
  20. 20.
    Leri, A., Liu, Y., Li, B., Fiordaliso, F., Malhotra, A., Latini, R., Kajstura, J., Anversa, P. (2000) Up-regulation of AT1 and at2 receptors in postinfarcted hypertrophied myocytes and stretch-mediated apoptotic cell death. Am J Pathol 156, 1663–1672.PubMedCrossRefGoogle Scholar
  21. 21.
    Fiordaliso, F., Li, B., Latini, R., Sonnenblick, E.H., Anversa, P., Leri, A., Kajstura, J. (2000) Myocyte death in streptozotocin-induced diabetes in rats is angiotensin II-dependent. Lab Invest 80, 513–527.PubMedCrossRefGoogle Scholar
  22. 22.
    Maunders, M.J. (1993) DNA and RNA ligases (EC 6.5.1.1, EC 6.5.1.2, EC 6.5.1.3), in Enzymes of Molecular Biology (Burrell, M.M. ed.), Humana, Totowa, NJ, pp. 213–230.Google Scholar
  23. 23.
    Sweeney, P.J., and Walker, J.M. (1993) Proteinase K (EC 3.4.21.14), in Enzymes of Molecular Biology (Burrell, M.M. ed.), Humana, Totowa, NJ, pp. 305–311.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Departments of Neurosurgery and Molecular & Cellular BiologyBaylor College of Medicine, and Michael E. DeBakey VA Medical CenterHoustonUSA

Personalised recommendations