In Situ Labeling of DNA Breaks and Apoptosis by T7 DNA Polymerase

  • Vladimir V. DidenkoEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 682)


The native T7 DNA polymerase is a fast and highly processive enzyme that can be used for in situ detection of apoptosis and various types of DNA breaks. The technique is quick and simple, and was shown to label earlier stages of apoptosis compared to the terminal transferase technique. The in situ labeling applications of T7 DNA polymerase are presented and summarized from the DNA damage detection standpoint. The detailed protocols are provided together with the discussion of their advantages and limitations.

Key words

DNA breaks Apoptosis detection T7 DNA polymerase DNA damage In situ labeling 


  1. 1.
    Walker P.R., Carson C., Leblanc J., and Sikorska M. (2002) Labeling DNA damage with terminal transferase: applicability, specificity and limitations, in In Situ Detection of DNA Damage: Methods and Protocols (Didenko, V.V. ed.) Humana, Totowa, NJ, pp. 3–19.Google Scholar
  2. 2.
    Loo D.T. (2002) TUNEL assay: an overview of techniques, in In Situ Detection of DNA Damage: Methods and Protocols (Didenko, V.V. ed.) Humana, Totowa, NJ, pp. 21–30.Google Scholar
  3. 3.
    Tanaka M., Momoi T., and Marunouchi T. (2000) In situ detection of activated caspase-3 in apoptotic granule neurons in the developing cerebellum in slice cultures and in vivo. Dev. Brain Res. 121, 223–28.CrossRefGoogle Scholar
  4. 4.
    Dierendonck J.H. (2002) DNA damage detection using DNA polymerase I or its Klenow fragment: applicability, specificity, limitations, in In Situ Detection of DNA Damage: Methods and Protocols (Didenko, V.V. ed.) Humana, Totowa, NJ, pp. 81–108.Google Scholar
  5. 5.
    Thiry M. (2002) In situ nick translation at the electron microscopic level, in In Situ Detection of DNA Damage: Methods and Protocols (Didenko, V.V. ed.) Humana, Totowa, NJ, pp.121–130.Google Scholar
  6. 6.
    Wood K.A., Dipasquale B., and Youle R.J. (1993) In situ labeling of granule cells for apoptosis-associated DNA fragmentation reveals different mechanisms of cell loss in developing cerebellum. Neuron 4, 621–32.CrossRefGoogle Scholar
  7. 7.
    Wood K.A. and Youle R.J. (1995) The Role of Free Radicals and ∼53 in Neuron Apoptosis in vivo. J. Neurosci. 15, 5851–57.PubMedGoogle Scholar
  8. 8.
    Didenko V.V., Ngo H., and Baskin D.S. (2003) Early necrotic DNA degradation: presence of blunt-ended DNA breaks, 3′ and 5′ overhangs in apoptosis, but only 5′ overhangs in early necrosis. Am. J. Pathol. 162, 1571–78.PubMedCrossRefGoogle Scholar
  9. 9.
    Otsuki Y. and Ito Y. (2002) Quantitative differentiation of both free 3′ OH and 5′ OH DNA ends using terminal transferase-based labeling combined with transmission electron microscopy, in In Situ Detection of DNA Damage: Methods and Protocols (Didenko, V.V. ed.) Humana, Totowa, NJ, pp. 41–54.Google Scholar
  10. 10.
    De Felici M., Lobascio A.M., and Klinger F.G. (2008) Cell death in fetal oocytes: many players for multiple pathways. Autophagy 4, 240–42.PubMedGoogle Scholar
  11. 11.
    Hirata H., Hibasami H., Yoshida T., Morita A., Ohkaya S., Matsumoto M., Sasaki H., and Uchida A. (1998) Differentiation and ­apoptosis without DNA fragmentation in ­cultured Schwann cells derived from wallerian-degenerated nerve. Apoptosis 3, 353–60.PubMedCrossRefGoogle Scholar
  12. 12.
    Métrailler-Ruchonnet I., Pagano A., Carnesecchi S., Ody C., Donati Y., and Barazzone Argiroffo C. (2007) Bcl-2 protects against hyperoxia-induced apoptosis through inhibition of the mitochondria-dependent pathway. Free Radic Biol Med. 42, 1062–74.PubMedCrossRefGoogle Scholar
  13. 13.
    Cohen G.M., Sun X.-M., Snowden R.T., Dinsdale D., and Skilleter D.N. (1992) Key morphological features of apoptosis may occur in the absence of internucleosomal DNA ­fragmentation. Biochem. J. 286, 331–34.PubMedGoogle Scholar
  14. 14.
    Zhang J. and Xu M. (2002) Apoptotic DNA fragmentation and tissue homeostasis. Trends Cell Biol. 12, 84–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Eun H.-M. (1996) Enzymology Primer for Recombinant DNA Technology. Academic Press, San Diego, CA. pp. 377–407.Google Scholar
  16. 16.
    Tabor S., Struhl K., Scharf S.J., and Gelfand D.H. (1997) DNA-dependent DNA polymerases, in Current Protocols in Molecular Biology (Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A., and Struhl, K. eds.), John Wiley & Sons, Hoboken, NJ, pp. 3.5.1–3.5.15.Google Scholar
  17. 17.
    Das S.K. and Fujimura R.K. (1979) Processiveness of DNA polymerases. A comparative study using a simple procedure. J. Biol. Chem. 254, 1227–32.PubMedGoogle Scholar
  18. 18.
    Bambara R.A., Uyemura D., and Choi T. (1978) On the processive mechanism of Escherichia coli DNA polymerase I. J. Biol. Chem 253, 413–23.PubMedGoogle Scholar
  19. 19.
    Lehman I.R. (1981) T-Phage DNA Poly­merases, in The Enzymes 14 (Boyer P.D. ed.) Academic Press, New York p. 64.Google Scholar
  20. 20.
    Tabor S., Huber H.E., and Richardson C.C. (1987) Escherichia coli thioredoxin confers processivity on the DNA polymerase activity of the gene 5 protein of bacteriophage T7. J. Biol. Chem. 262, 16212–223.PubMedGoogle Scholar
  21. 21.
    Adler S. and Modrich P. (1979) T7-induced DNA polymerase. Characterization of associated exonuclease activities and resolution into biologically active subunits. J. Biol. Chem. 254, 11605–614.PubMedGoogle Scholar
  22. 22.
    Hori K., Mark D.F., and Richardson C.C. (1979) Deoxyribonucleic acid polymerase of bacteriophage T7. Purification and properties of the phage-encoded subunit, the gene 5 protein. J. Biol. Chem. 254, 11591–97.PubMedGoogle Scholar
  23. 23.
    Didenko V.V. and Hornsby P.J. (1996) Presence of double-strand breaks with single-base 3′ overhangs in cells undergoing apoptosis but not necrosis. J. Cell Biol. 135, 1369–76.PubMedCrossRefGoogle Scholar
  24. 24.
    Didenko V.V., Tunstead J.R., and Hornsby, P.J. (1998) Biotin-labeled hairpin oligonucleotides. Probes to detect double-strand breaks in DNA in apoptotic cells. Am. J. Pathol. 152, 897–902.PubMedGoogle Scholar
  25. 25.
    Widlak P., Li P., Wang X., and Garrard W.T. (2000) Cleavage preferences of the apoptotic endonuclease DFF40 (caspase-activated DNase or nuclease) on naked DNA and chromatin substrates. J Biol Chem. 275, 8226–32.PubMedCrossRefGoogle Scholar
  26. 26.
    Staley K., Blaschke A.J., and Chun J. (1997) Apoptotic DNA fragmentation is detected by a semiquantitative ligation-mediated PCR of blunt DNA ends. Cell Death Diff. 4, 66–75.CrossRefGoogle Scholar
  27. 27.
    Didenko V.V. (2002) Detection of specific double-strand DNA breaks and apoptosis in situ using T4 DNA ligase, in In Situ Detection of DNA Damage: Methods and Protocols (Didenko V.V. ed.) Humana, Totowa, NJ, pp. 143–51.Google Scholar
  28. 28.
    Al-Lamki R.S., Skepper J.N., Loke Y.W., King A., and Burton G.J. (1998) Apoptosis in the early human placental bed and its discrimination from necrosis using the in-situ DNA ligation technique. Hum Reprod. 13, 3511–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Challberg M.D. and Englund P.T. (1980) Specific labeling of 3′ termini with T4 DNA polymerase. Methods Enzymol. 65, 39–43.PubMedCrossRefGoogle Scholar
  30. 30.
    Grippo P. and Richardson C.C. (1971) Deoxyribonucleic acid polymerase of bacteriophage T7. J. Biol. Chem. 246, 6867–73.PubMedGoogle Scholar
  31. 31.
    Nordstrom B., Randahl H., Slaby I., and Holmgren A. (1981) Characterization of bacteriophage T7 DNA polymerase purified to homogeneity by antithioredoxin immunoadsorbent chromatography. J. Biol. Chem. 256, 3112–17.PubMedGoogle Scholar
  32. 32.
    Tabor S. and Richardson C.C. (1989) Effect of manganese ions on the incorporation of dideoxynucleotides by bacteriophage T7 DNA polymerase and Escherichia coli DNA polymerase I. Proc. Natl. Acad. Sci. U S A 86, 4076–80.PubMedCrossRefGoogle Scholar
  33. 33.
    Tabor S. and Richardson C.C. (1989) Selec­tive inactivation of the exonuclease activity of ­bacteriophage T7 DNA polymerase by in vitro mutagenesis. J. Biol. Chem. 264, 6447–58.PubMedGoogle Scholar
  34. 34.
    Wood K.A. (1994) Unmodified T7 DNA Polymerase for the In Situ Detection of DNA Fragmentation Associated with Apoptosis. Epicentre Forum 1, 1. (

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Departments of Neurosurgery and Molecular & Cellular BiologyBaylor College of Medicine, and Michael E. DeBakey VA Medical CenterHoustonUSA

Personalised recommendations