Advertisement

EM-ISEL: A Useful Tool to Visualize DNA Damage at the Ultrastructural Level

  • Antonio MigheliEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 682)

Abstract

A method for the localization of DNA strand breaks at the ultrastructural level is presented. The technique involves the use of terminal deoxynucleotidyl transferase and labeled dUTP. Incorporation of labeled nucleotides is visualized through colloidal gold labeling. Cells undergoing apoptotic or necrotic cell death, as well as cells showing death-unrelated DNA damage, can be easily distinguished. The technique uses tissues routinely processed for electron microscopy. It has been successfully applied to study DNA damage and apoptosis in different pathologic conditions. The feasibility of this technique for retrospective studies on archival material is emphasized.

Key words

DNA damage In situ end-labeling Electron microscopy Apoptosis Necrosis 

Notes

Acknowledgment

The financial support of Regione Piemonte-Ricerca Sanitaria Finalizzata is gratefully acknowledged.

References

  1. 1.
    McKinnon, P.J. and Caldecott, K.W. (2007) DNA strand break repair and human genetic disease. Annu. Rev. Genom. Human Genet. 8, 37–55.CrossRefGoogle Scholar
  2. 2.
    Katyal, S. and McKinnon, P.J. (2008) DNA strand breaks, neurodegeneration and aging in the brain. Mech. Ageing Dev. 129, 483–491.PubMedCrossRefGoogle Scholar
  3. 3.
    Martin, L.J. (2008) DNA damage and repair: relevance to mechanisms of neurodegeneration. J. Neuropathol. Exp. Neurol. 67, 377–387.PubMedCrossRefGoogle Scholar
  4. 4.
    Kerr, J.F.R., Wyllie, A.H. and Currie, A.R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257.PubMedCrossRefGoogle Scholar
  5. 5.
    Jaattela, M. (2004) Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene 23, 2746–2756.PubMedCrossRefGoogle Scholar
  6. 6.
    Kumar, S. (2007) Caspase function in programmed cell death. Cell Death Differ. 14, 32–43.PubMedCrossRefGoogle Scholar
  7. 7.
    Turk, B. and Stoka, V. (2007) Protease signalling in cell death: caspases versus cysteine cathepsins. FEBS Lett. 581, 2761–2767.PubMedCrossRefGoogle Scholar
  8. 8.
    Parrish, J.Z. and Xue, D. (2006) Cuts can kill: the roles of apoptotic nucleases in cell death and animal development. Chromosoma 115, 89–97.PubMedCrossRefGoogle Scholar
  9. 9.
    Golstein, P. and Kroemer, G. (2007) Cell death by necrosis: towards a molecular definition. Trends Biochem. Sci. 32, 37–43.PubMedCrossRefGoogle Scholar
  10. 10.
    Hayashi, R., Ito, Y., Matsumoto, K., Fujino, Y. and Otsuki, Y. (1998) Quantitative differentiation of both free 3′-OH and 5′-OH DNA ends between heat-induced apoptosis and necrosis. J. Histochem. Cytochem. 46, 1051–1059.PubMedCrossRefGoogle Scholar
  11. 11.
    Didenko, V.V. and Hornsby, P.J. (1996) Presence of double-strand breaks with single-base 3′ overhangs in cells undergoing apoptosis but not necrosis. J. Cell Biol. 135, 1369–1376.PubMedCrossRefGoogle Scholar
  12. 12.
    Gavrieli, Y., Sherman, Y. and Ben-Sasson, S.A. (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119, 493–501.PubMedCrossRefGoogle Scholar
  13. 13.
    Gold, R., Schmied, M., Rothe, G., Zischler, H., Breitschopf, H., Wekerle, H. and Lassmann, H. (1993) Detection of DNA fragmentation in apoptosis: application of an in situ nick translation to cell culture systems and tissue sections. J. Histochem. Cytochem. 41, 1023–1030.PubMedCrossRefGoogle Scholar
  14. 14.
    Wijsman, J.H., Jonker, R.R., Keijzer, R., Van de Velde, C.J.H., Cornelisse, C.J. and Van Dierendonck, J.H. (1993) A new method to detect apoptosis in paraffin sections: in situ end-labeling of fragmented DNA. J. Histochem. Cytochem. 41, 7–12.PubMedCrossRefGoogle Scholar
  15. 15.
    Gorczyca, W., Gong, J. and Darzynkiewicz, Z. (1993) Detection of DNA strand breaks in individual apoptotic cells by the in situ terminal deoxynucleotidyl transferase and nick translation assays. Cancer Res. 53, 1945–1951PubMedGoogle Scholar
  16. 16.
    Migheli, A., Cavalla, P., Marino, S. and Schiffer, D. (1994) A study of apoptosis in normal and pathologic nervous tissue after in situ end-labeling of fragmented DNA. J. Neuropathol. Exp. Neurol. 53, 606–616.PubMedCrossRefGoogle Scholar
  17. 17.
    Grasl-Kraupp, B., Ruttkay-Nedecky, B., Koudelka, H., Bukowska, K., Bursch, W. and Schulte-Hermann, R. (1995) In situ detection of fragmented DNA (TUNEL assay) fails to discriminate among apoptosis, necrosis and autolytic cell death: a cautionary note. Hepatology 21, 1465–1468.PubMedGoogle Scholar
  18. 18.
    van Lookeren Campagne, M., Lucassen, P.J., Vermeulen, J.P. and Balasz, R. (1995) NMDA and kainate induce internucleosomal DNA cleavage associated with both apoptotic and necrotic cell death in the neonatal rat brain. Eur. J. Neurosci. 7, 1627–1640.PubMedCrossRefGoogle Scholar
  19. 19.
    Mundle, S., Gao, X.Z., Khan, S., Gregory, S.A., Preisler, H.D. and Raza, A. (1995) Two in situ labeling techniques reveal different ­patterns of DNA fragmentation during spontaneous apoptosis in vivo and induced apoptosis in vitro. Anticancer Res. 15, 1895–1904.PubMedGoogle Scholar
  20. 20.
    Gold, R., Schmied, M., Giegerich, G., Breitschopf, H., Hartung, H.P., Toyka, K.V. and Lassmann, H. (1994) Differentiation between cellular apoptosis and necrosis by the combined use of in situ tailing and nick translation techniques. Lab. Invest. 71, 219–225.PubMedGoogle Scholar
  21. 21.
    Lopes, S., Jurisicova, A., Sun, J.G. and Casper, R.F. (1998) Reactive oxygen species: potential cause for DNA fragmentation in human spermatozoa. Hum. Reprod. 13, 896–900.PubMedCrossRefGoogle Scholar
  22. 22.
    Coates, P.J., Save, V., Ansari, B. and Hall, P.A. (1995) Demonstration of DNA damage/repair in individual cells using in situ end labelling: association of p53 with sites of DNA damage. J. Pathol. 176, 19–26.PubMedCrossRefGoogle Scholar
  23. 23.
    Assad, M., Lemieux, N. and Rivard, C.H. (1997) Immunogold electron microscopy in situ end-labeling (EM-ISEL): assay for biomaterial DNA damage detection. Biomed. Mater. Eng. 7, 391–400.PubMedGoogle Scholar
  24. 24.
    Kisby, G.E., Kabel, H., Hugon, J. and Spencer, P. (1999) Damage and repair of nerve cell DNA in toxic stress. Drug Metab. Rev. 31, 589–618.PubMedCrossRefGoogle Scholar
  25. 25.
    Tateyama, H., Tada, T., Hattori, H., Murase, T., Li, W.X. and Eimoto, T. (1998) Effects of prefixation and fixation times on apoptosis detection by in situ end-labeling of fragmented DNA. Arch. Pathol. Lab. Med. 122, 252–255.PubMedGoogle Scholar
  26. 26.
    Schallock, K., Schulz-Schaeffer, W.J., Giese, A. and Kretzschmar, H.A. (1997) Postmortem delay and temperature conditions affect the in situ end-labeling (ISEL) assay in brain tissue of mice. Clin. Neuropathol. 16, 133–136.PubMedGoogle Scholar
  27. 27.
    Labat-Moleur, F., Guillermet, C., Lorimier, P., Robert, C., Lantuejoul, S., Brambilla, E. and Negoescu, A. (1998) TUNEL apoptotic cell detection in tissue sections: critical evaluation and improvement. J. Histochem. Cytochem. 46, 327–334.PubMedCrossRefGoogle Scholar
  28. 28.
    Migheli, A., Piva, R., Wei, J., Attanasio, A., Casolino, S., Dlouhy, S.R., Bayer, S.A. and Ghetti, B. (1997) Diverse cell death pathways result from a single missense mutation in weaver mouse. Am. J. Pathol. 151, 1629–1638.PubMedGoogle Scholar
  29. 29.
    Migheli, A., Attanasio, A. and Schiffer, D. (1995) Ultrastructural detection of DNA strand breaks in apoptotic neural cells by in situ end-labelling techniques. J. Pathol. 176, 27–35.PubMedCrossRefGoogle Scholar
  30. 30.
    Depault, F., Cojocaru, M., Fortin, F., Chakrabarti, S. and Lemieux, N. (2006) Genotoxic effects of chromium (VI) and cadmium (II) in human blood lymphocytes using the electron microscopy in situ end-labeling (EM-ISEL) assay. Toxicol.In Vitro 20, 513–518.PubMedCrossRefGoogle Scholar
  31. 31.
    Kumagai, K., Otsuki, Y., Ito, Y., Shibata, M.A., Abe, H. and Ueki, M. (2001) Apoptosis in the normal human amnion at term, independent of Bcl-2 regulation and onset of labour. Mol. Hum. Reprod. 7, 681–689.PubMedCrossRefGoogle Scholar
  32. 32.
    Al-Lamki, R.S., Skepper, J.N., Loke, Y.W., King, A. and Burton, G.J. (1998) Apoptosis in the early human placental bed and its discrimination from necrosis using the in-situ DNA ligation technique. Hum. Reprod. 13, 3511–3519.PubMedCrossRefGoogle Scholar
  33. 33.
    Kanoh, M., Takemura, G., Misao, J., Hayakawa, Y., Aoyama, T., Nishigaki, K., Noda, T., Fujiwara, T., Fukuda, K., Minatoguchi, S. and Fujiwara, H. (1999) Significance of myocytes with positive DNA in situ nick end-labeling (TUNEL) in hearts with dilated cardiomyopathy-Not apoptosis but DNA repair. Circulation 99, 2757–2764.PubMedCrossRefGoogle Scholar
  34. 34.
    Ohno, M., Takemura, G., Ohno, A., Misao, J., Hayakawa, Y., Minatoguchi, S., Fujiwara, T. and Fujiwara, H. (1998) “Apoptotic” myocytes in infarct area in rabbit hearts may be oncotic myocytes with DNA fragmentation. Analysis by immunogold electron microscopy combined with in situ nick end-labeling. Circulation 98, 1422–1430.Google Scholar
  35. 35.
    Hegyi, L., Skepper, J.N., Cary, N.R.B. and Mitchinson, M.J. (1996) Foam cell apoptosis and the development of the lipid core of human atherosclerosis. J. Pathol. 180, 423–429.PubMedCrossRefGoogle Scholar
  36. 36.
    Ikezoe, K., Nakagawa, M., Yan, C.Z., Kira, J., Goto, Y. and Nonaka, I. (2002) Apoptosis is suspended in muscle of mitochondrial encephalomyopathies. Acta Neuropathol. 103, 531–540.PubMedCrossRefGoogle Scholar
  37. 37.
    Ikezoe, K., Nakagawa, M., Osoegawa, M., Kira, J. and Nonaka, I. (2004) Ultrastructural detection of DNA fragmentation in myonuclei of fatal reducing body myopathy. Acta Neuropathol. 107, 439–442.PubMedCrossRefGoogle Scholar
  38. 38.
    Kalaaji, M., Fenton, K.A., Mortensen, E.S., Olsen, R., Sturfelt, G., Alm, P. and Rekvig, O. P. (2007) Glomerular apoptotic nucleosomes are central target structures for nephritogenic antibodies in human SLE nephritis. Kidney Int. 71, 664–672.PubMedCrossRefGoogle Scholar
  39. 39.
    Bunting, R.W. and Selig, M.K. (2002) Localization of DNA in ultrascopic nuclear appendages of polymorphonuclear white blood cells from patients with low serum B-12. J. Histochem. Cytochem. 50, 1381–1388.PubMedCrossRefGoogle Scholar
  40. 40.
    Ishida-Yamamoto, A., Yamauchi, T., Tanaka, H., Nakane, H., Takahashi, H. and Iizuka, H. (1999) Electron microscopic in situ DNA nick end-labeling in combination with immunoelectron microscopy. J. Histochem. Cytochem. 47, 711–717.PubMedCrossRefGoogle Scholar
  41. 41.
    Goping, G., Wood, K.A., Sei, Y. and Pollard, H.B. (1999) Detection of fragmented DNA in apoptotic cells embedded in LR White: a combined histochemical (LM) and ultrastructural (EM) study. J. Histochem. Cytochem. 47, 561–568.PubMedCrossRefGoogle Scholar
  42. 42.
    Thiry, M. (1991) In situ nick translation at the electron microscopic level: a tool for studying the location of DNAse I-sensitive regions within the cell. J. Histochem. Cytochem. 39, 871–874.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Centro Regionale Diagnosi ed Osservazione delle Malattie Prioniche DOMP-ASL TO2TurinItaly

Personalised recommendations