Skip to main content

Transgenic Mouse Technology: Principles and Methods

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 590))

Abstract

Introduction of foreign DNA into the mouse germ line is considered a major technical advancement in the fields of developmental biology and genetics. This technology now referred to as transgenic mouse technology has revolutionized virtually all fields of biology and provided new genetic approaches to model many human diseases in a whole animal context. Several hundreds of transgenic lines with expression of foreign genes specifically targeted to desired organelles/cells/tissues have been characterized. Further, the ability to spatio-temporally inactivate or activate gene expression in vivo using the “Cre-lox” technology has recently emerged as a powerful approach to understand various developmental processes including those relevant to molecular endocrinology. In this chapter, we will discuss the principles of transgenic mouse technology, and describe detailed methodology standardized at our institute.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Griffiths, A.J.F., Wessler, S.R., Lewontin, R.C., Carroll, S.B. (2008) Introduction to genetic analysis. W.H. Freeman & Co., New York.

    Google Scholar 

  2. Nagy, A., Gertsenstein, M., Vintersten, K., Behringer, R. (2003) Manipulating the mouse embryo: A laboratory manual; 3rd Edition, Cold Spring Harbor Laboratory, New York.

    Google Scholar 

  3. Palmiter, R.D., Brinster, R.L. (1986) Germ-line transformation of mice.Ann Rev Genet. 20, 465–499.

    Article  PubMed  CAS  Google Scholar 

  4. Brinster, R.L., Palmiter, R.D. (1984) Introduction of genes into the germ line of animals. Harvey Lectures. 80, 1–38.

    PubMed  CAS  Google Scholar 

  5. Palmiter, R.D., Brinster, R.L., Hammer, R.E., Trumbauer, M.E., Rosenfeld, M.G., Birnberg, N.C., Evans, R.M. (1982) Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature. 300, 611–615.

    Article  PubMed  CAS  Google Scholar 

  6. Bradley, A, van der Weyden, L. (2006) Mouse: Chromosome Engineering for Modeling Human Disease. Ann Rev Genomics Human Genetics. 7, 247–276.

    Article  Google Scholar 

  7. Capecchi, M.R. (2005) Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet. 6, 507–512.

    Article  PubMed  CAS  Google Scholar 

  8. Evans, M. (2005) Embryonic stem cells: a perspective. Novartis Found Symp. 265, 98–103; discussion 103–106.

    Google Scholar 

  9. Koller, B.H., Smithies, O. (1992) Altering genes in animals by gene targeting. Ann Rev Immunol. 10, 705–730.

    Article  CAS  Google Scholar 

  10. Le, Y., Sauer, B. (2001) Conditional gene knockout using Cre recombinase. Mol Biotechnol. 17, 269–275.

    Article  PubMed  CAS  Google Scholar 

  11. Sauer, B., Henderson, N. (1989) Cre-stimulated recombination at loxP-containing DNA sequences placed into the mammalian genome. Nucleic Acids Res. 17, 147–161.

    Article  PubMed  CAS  Google Scholar 

  12. Porret, A., Merillat, A.M., Guichard, S., Beermann, F., Hummler, E. (2006) Tissue-specific transgenic and knockout mice. Methods Mol Biol. 337, 185–205.

    PubMed  CAS  Google Scholar 

  13. Austin, C.P., Battey, J.F., Bradley, A., Bucan, M., Capecchi, M., Collins, F.S., et al. (2004) The knockout mouse project. Nat Genet 36, 921–924.

    Article  PubMed  CAS  Google Scholar 

  14. Joyner, A.L. (2001) Gene Targeting: A practical approach. 2nd edition. Oxford University Press, New York.

    Google Scholar 

  15. Kumar, T.R., Schuff, K.G., Nusser, K.D., Low, M.J. (2006) Gonadotroph-specific expression of the human follicle stimulating hormone beta gene in transgenic mice. Mol Cell Endocrinol. 247, 103–115.

    Article  PubMed  CAS  Google Scholar 

  16. Hamernik, D.L., Keri, R.A., Clay, C.M., Clay, J.N., Sherman, G.B., Sawyer, H.R., et al. (1992) Gonadotrope- and thyrotrope-specific expression of the human and bovine glycoprotein hormone alpha-subunit genes is regulated by distinct cis-acting elements. Mol Endocrinol. 6, 1745–1755.

    Article  PubMed  CAS  Google Scholar 

  17. Kendall, S.K., Saunders, T.L., Jin, L, Lloyd, R.V., Glode, LM, Nett TM, et al. (1991) Targeted ablation of pituitary gonadotropes in transgenic mice. Mol Endocrinol. 5, 2025–2036.

    Article  PubMed  CAS  Google Scholar 

  18. Keri, R.A., Bachmann, D.J., Behrooz, A., Herr, B.D., Ameduri, R.K., Quirk, C.C., et al. (2000) An NF-Y binding site is important for basal, but not gonadotropin-releasing hormone-stimulated, expression of the luteinizing hormone beta subunit gene. J Biol Chem. 275, 13082–13088.

    Article  PubMed  CAS  Google Scholar 

  19. Keri, R.A., Nilson, J.H. (1996) A steroidogenic factor-1 binding site is required for activity of the luteinizing hormone beta subunit promoter in gonadotropes of transgenic mice. J Biol Chem. 271, 10782–10785.

    Article  PubMed  CAS  Google Scholar 

  20. Quirk, C.C., Lozada, K.L., Keri, R.A., Nilson, J.H. (2001) A single Pitx1 binding site is essential for activity of the LHbeta promoter in transgenic mice. Mol Endocrinol. 15, 734–746.

    Article  PubMed  CAS  Google Scholar 

  21. Balthasar, N., Mery, P.F., Magoulas, C.B., Mathers, K.E., Martin, A., Mollard, P., et al. (2003) Growth hormone-releasing hormone (GHRH) neurons in GHRH-enhanced green fluorescent protein transgenic mice: a ventral hypothalamic network. Endocrinology. 144, 2728–2740.

    Article  PubMed  CAS  Google Scholar 

  22. Bonnefont, X., Lacampagne, A., Sanchez-Hormigo, A., Fino, E., Creff, A., Mathieu, M.N., et al. (2005) Revealing the large-scale network organization of growth hormone-secreting cells. Proc Natl Acad Sci USA. 102, 16880–16885.

    Article  PubMed  CAS  Google Scholar 

  23. Magoulas, C., McGuinness, L., Balthasar, N., Carmignac, D.F., Sesay, A.K, Mathers, K.E., et al. (2000) A secreted fluorescent reporter targeted to pituitary growth hormone cells in transgenic mice. Endocrinology. 141, 4681–4689.

    Article  PubMed  CAS  Google Scholar 

  24. Markkula, M., Kananen, K., Klemi, P., Huhtaniemi, I. (1996) Pituitary and ovarian expression of the endogenous follicle-stimulating hormone (FSH) subunit genes and an FSH beta-subunit promoter-driven herpes simplex virus thymidine kinase gene in transgenic mice; specific partial ablation of FSH-producing cells by antiherpes treatment. J Endocrinol. 150, 265–273.

    Article  PubMed  CAS  Google Scholar 

  25. Le Tissier, P. R., Carmignac, D.F., Lilley, S., Sesay, A. K., Phelps, C.J., Houston P, et al. (2005) Hypothalamic growth hormone-releasing hormone (GHRH) deficiency: targeted ablation of GHRH neurons in mice using a viral ion channel transgene. Mol Endocrinol 19, 1251–1262.

    Article  PubMed  Google Scholar 

  26. Ahtiainen, M., Toppari, J., Poutanen, M., Huhtaniemi, I. (2004) Indirect Sertoli cell-mediated ablation of germ cells in mice expressing the inhibin-alpha promoter/herpes simplex virus thymidine kinase transgene. Biol Reprod. 71, 1545–1550.

    Article  PubMed  CAS  Google Scholar 

  27. Alarid, E.T., Holley, S., Hayakawa, M., Mellon, P.L. (1998) Discrete stages of anterior pituitary differentiation recapitulated in immortalized cell lines. Mol Cell Endocrinol. 140, 25–30.

    Article  PubMed  CAS  Google Scholar 

  28. Alarid, E.T., Windle, J.J., Whyte, D.B., Mellon, P.L. (1996) Immortalization of pituitary cells at discrete stages of development by directed oncogenesis in transgenic mice. Development. 122, 3319–3329.

    PubMed  CAS  Google Scholar 

  29. Kumar, T. R., Graham, K. E., Asa S. L., Low, M. J. (1998) Simian virus 40 T antigen-induced gonadotroph adenomas: a model of human null cell adenomas. Endocrinology 139, 3342–3351.

    Article  PubMed  CAS  Google Scholar 

  30. Pernasetti, F., Spady, T. J., Hall, S. B., Rosenberg, S. B., Givens, M. L., Anderson S., et al. (2003) Pituitary tumorigenesis targeted by the ovine follicle-stimulating hormone beta-subunit gene regulatory region in transgenic mice. Mol Cell Endocrinol. 203, 169–183.

    Article  PubMed  CAS  Google Scholar 

  31. Thomas, P., Mellon, P.L., Turgeon, J., Waring, D.W. (1996) The Lbeta-T2 clonal gonadotrope: a model for single cell studies of endocrine cell secretion. Endocrinology. 137, 2979–2989.

    Article  PubMed  CAS  Google Scholar 

  32. Windle, J. J., Weiner, R. I., Mellon, P. L. (1990) Cell lines of the pituitary gonadotrope lineage derived by targeted oncogenesis in transgenic mice. Mol Endocrinol. 4, 597–603.

    Article  PubMed  CAS  Google Scholar 

  33. Hanahan, D. (1985) Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature. 315, 115–122.

    Article  PubMed  CAS  Google Scholar 

  34. Palmiter, R.D. (1987) Molecular biology of metallothionein gene expression. Experientia Suppl. 52, 63–80.

    Google Scholar 

  35. Palmiter, R. D., Norstedt, G., Gelinas, R.E., Hammer, R.E., Brinster, R. L. (1983) Metallothionein-human GH fusion genes stimulate growth of mice. Science. 222, 809–814.

    Article  PubMed  CAS  Google Scholar 

  36. Guo, Q., Kumar, T. R., Woodruff, T. K., Hadsell, L. A., DeMayo, F. J., Matzuk, M. M. (1998) Overexpression of mouse follistatin causes reproductive defects in transgenic mice. Mol Endocrinol. 12, 96–106.

    Article  PubMed  CAS  Google Scholar 

  37. Kumar, T. R., Palapattu, G., Wang, P., Woodruff, T. K., Boime, I., Byrne M. C., et al. (1999) Transgenic models to study gonadotropin function: the role of follicle-stimulating hormone in gonadal growth and tumorigenesis. Mol Endocrinol. 13, 851–865.

    Article  PubMed  CAS  Google Scholar 

  38. Matzuk, M. M., DeMayo, F. J., Hadsell, L. A., Kumar, T. R. (2003) Overexpression of human chorionic gonadotropin causes multiple reproductive defects in transgenic mice. Biol Reprod. 69, 338–346.

    Article  PubMed  CAS  Google Scholar 

  39. Ryding, A. D., Sharp, M. G., Mullins, J. J. (2001) Conditional transgenic technologies. J Endocrinol. 171, 1–14.

    Article  PubMed  CAS  Google Scholar 

  40. Schnutgen, F., Doerflinger, N., Calleja, C., Wendling, O., Chambon, P., Ghyselinck, N.B. (2003) A directional strategy for monitoring Cre-mediated recombination at the cellular level in the mouse. Nat Biotechnol. 21, 562–565.

    Article  PubMed  Google Scholar 

  41. Zhu, Z., Zheng, T., Lee, C. G., Homer, R. J., Elias, J. A. (2002) Tetracycline-controlled transcriptional regulation systems: advances and application in transgenic animal modeling. Semin Cell Dev Biol. 13, 121–128.

    Article  PubMed  CAS  Google Scholar 

  42. Karzenowski, D., Potter, D.W., Padidam, M. (2005) Inducible control of transgene expression with ecdysone receptor: gene switches with high sensitivity, robust expression, and reduced size. Biotechniques. 39, 191–192, 194, 196.

    Google Scholar 

  43. Pierson, T.M., Wang, Y., DeMayo, F. J., Matzuk, M. M., Tsai, S. Y., O'Malley, B. W. (2000) Regulable expression of inhibin A in wild-type and inhibin alpha null mice. Mol Endocrinol. 14, 1075–1085.

    Article  PubMed  CAS  Google Scholar 

  44. Albanese, C., Hulit, J., Sakamaki, T., Pestell, R. G. (2002) Recent advances in inducible expression in transgenic mice. Semin Cell Dev Biol. 13, 129–141.

    Article  PubMed  CAS  Google Scholar 

  45. Marten, H., Hofker, J. V. D., Deursen, J.V. (2003) Transgenic Mouse: Methods and Portocols (Methods in Molecular Biology. V. 209, Humana Press, Totowa, N.J.

    Google Scholar 

  46. Han, J. Y. (2008) Germ cells and transgenesis in chickens. Comp Immunol Microbiol Infect Dis.[Epub ahead of print].

    Google Scholar 

  47. Houdebine, L. M. (2008) Production of pharmaceutical proteins by transgenic animals. Comp Immunol Microbiol Infect Dis. [Epub ahead of print].

    Google Scholar 

  48. Laible, G., Wells, D. N. (2006) Transgenic cattle applications: the transition from promise to proof. Biotechnol Genet Eng Rev. 22, 125–150.

    PubMed  CAS  Google Scholar 

  49. Melo, E. O., Canavessi, A. M., Franco, M. M., Rumpf, R. (2007) Animal transgenesis: state of the art and applications. J Appl Genet. 48, 47–61.

    Article  PubMed  Google Scholar 

  50. Robl, J. M., Wang, Z., Kasinathan, P., Kuroiwa, Y. (2007) Transgenic animal production and animal biotechnology. Theriogenology. 467, 127–133.

    Article  Google Scholar 

  51. Halpern, M. E., Rhee, J., Goll, M.G., Akitake, C.M., Parsons, M., Leach, S.D. (2008) Gal4/UAS transgenic tools and their application to zebrafish. Zebrafish. 5, 97–110.

    Article  PubMed  CAS  Google Scholar 

  52. Higashijima, S. (2008) Transgenic zebrafish expressing fluorescent proteins in central nervous system neurons. Dev Growth Differ. 50, 407–413.

    Article  PubMed  CAS  Google Scholar 

  53. Houdebine, L. M., Chourrout, D. (1991) Transgenesis in fish. Experientia. 47, 891–897.

    Article  PubMed  CAS  Google Scholar 

  54. Male, R., Lorens, J. B., Nerland, A. H., Slinde, E. (1993) Biotechnology in aquaculture, with special reference to transgenic salmon. Biotechnol Genet Eng Rev. 11, 31–56.

    PubMed  CAS  Google Scholar 

  55. Chesneau, A., Sachs, L. M., Chai, N., Chen, Y., Du Pasquier, L., Loeber, J., et al. (2008) Transgenesis procedures in Xenopus. Biol Cell. 100, 503–521.

    Article  PubMed  CAS  Google Scholar 

  56. Ishibashi, S., Kroll, K. L., Amaya, E. (2008) A method for generating transgenic frog embryos. Methods Mol Biol. 461, 447–466.

    Article  PubMed  CAS  Google Scholar 

  57. Niemann, H., Kues, W., Carnwath, J. W. (2005) Transgenic farm animals: present and future. Rev Sci Tech. 24, 285–298.

    PubMed  CAS  Google Scholar 

  58. Niemann, H, Kues, W. A. (2003) Application of transgenesis in livestock for agriculture and biomedicine. Anim Reprod Sci. 79, 291–317.

    Article  PubMed  CAS  Google Scholar 

  59. Van Cott, K.E, Velander, W. H. (1998) Transgenic animals as drug factories: a new source of recombinant protein therapeutics. Expert Opin Investig Drugs. 7, 1683–1690.

    Article  PubMed  CAS  Google Scholar 

  60. Campbell, K. H., Fisher, P., Chen, W. C., Choi, I., Kelly, R. D., Lee, J. H., et al. (2007) Somatic cell nuclear transfer: Past, present and future perspectives. Theriogenology. 68 Suppl. 1, S214–S231.

    Google Scholar 

  61. Dobrinski, I. (2006) Germ cell transplantation in pigs–advances and applications. Soc Reprod Fertil Suppl. 62, 331–339.

    Google Scholar 

  62. Prather, R. S., Sutovsky, P., Green, J. A. (2004) Nuclear remodeling and reprogramming in transgenic pig production. Exp Biol Med (Maywood). 229, 1120–1126.

    CAS  Google Scholar 

  63. Chrenek, P., Makarevich, A. V., Pivko, J., Massanyi, P., Lukac, N. (2009) Characteristics of rabbit transgenic mammary gland expressing recombinant human factor VIII. Anat Histol Embryol. 38, 85–88.

    Article  PubMed  CAS  Google Scholar 

  64. Kondo M, Sakai T, Komeima K, Kurimoto Y, Ueno S, Nishizawa Y, et al. (2008) Generation of a transgenic rabbit model of retinal degeneration. Invest Ophthalmol Vis Sci.[Epub ahead of print].

    Google Scholar 

  65. Li, S., Guo, Y., Shi, J., Yin, C., Xing, F., Xu, L., et al. (2008) Transgene expression of enhanced green fluorescent protein in cloned rabbits generated from in vitro-transfected adult fibroblasts. Transgenic Res.[Epub ahead of print].

    Google Scholar 

  66. Murphy, D. (2008) Production of transgenic rodents by the microinjection of cloned DNA into fertilized one-celled eggs. Methods Mol Biol. 461, 71–109.

    Article  PubMed  CAS  Google Scholar 

  67. Chan, A. W., Chong, K.Y., Martinovich, C., Simerly, C., Schatten, G. (2001) Transgenic monkeys produced by retroviral gene transfer into mature oocytes. Science. 291, 309–312.

    Article  PubMed  CAS  Google Scholar 

  68. Chan, A. W., Luetjens, C. M., Dominko, T., Ramalho-Santos, J., Simerly, C. R., Hewitson L, et al. (2000) TransgenICSI reviewed: foreign DNA transmission by intracytoplasmic sperm injection in rhesus monkey. Mol Reprod Dev. 56, 325–328.

    Article  PubMed  CAS  Google Scholar 

  69. Kumar, T. R., Low, M. J., Matzuk, M. M. (1998) Genetic rescue of follicle-stimulating hormone beta-deficient mice. Endocrinology. 139, 3289–3295.

    Article  PubMed  CAS  Google Scholar 

  70. Huang, H. J., Sebastian, J., Strahl, B. D., Wu, J. C, Miller, W. L. (2001) Transcriptional regulation of the ovine follicle-stimulating hormone-beta gene by activin and gonadotropin-releasing hormone (GnRH): involvement of two proximal activator protein-1 sites for GnRH stimulation. Endocrinology. 142, 2267–2274.

    Article  PubMed  CAS  Google Scholar 

  71. Huang, H. J., Sebastian, J., Strahl, B. D., Wu, J. C., Miller, W. L. (2001) The promoter for the ovine follicle-stimulating hormone-beta gene (FSHbeta) confers FSHbeta-like expression on luciferase in transgenic mice: regulatory studies in vivo and in vitro. Endocrinology. 142, 2260–2266.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

T.R.K. acknowledges funding support from NIH (NCRR Center for Biomedical Research Excellence Program Grant RR024214, HD04394, HD056082 and K-INBRE P20 RR016475) and The Hall Family Foundation, Kansas City, MO. H.W. is the recipient of a postdoctoral fellowship from the Biomedical Research Training Program at the Kansas University Medical Center.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kumar, T.R., Larson, M., Wang, H., McDermott, J., Bronshteyn, I. (2009). Transgenic Mouse Technology: Principles and Methods. In: Park-Sarge, OK., Curry, T. (eds) Molecular Endocrinology. Methods in Molecular Biology, vol 590. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-378-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-378-7_22

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-377-0

  • Online ISBN: 978-1-60327-378-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics